当前位置:主页 > 科技论文 > 环境工程论文 >

基于卫星和AERONET观测的北京地区气溶胶光学特性研究

发布时间:2019-06-13 21:07
【摘要】:随着经济的发展和城市化进程的加快,北京及其周边环渤海地区的大气污染问题日益严重,对人类的生活环境产生严重的影响。因此,对北京地区进行长期有效的气溶胶观测研究,并了解大气污染环境下气溶胶的光学特性,对改善空气质量、评估区域大至全球的气溶胶辐射强迫和了解气候变化都是至关重要的。本文主要结合MODIS数据、CALIPSO数据和AERONET观测网数据,采用交互式数据语言IDL(Interactive Data Language)处理数据的方法研究北京地区气溶胶的光学特性。首先以2013年3月的典型沙尘天气作为个例进行分析,采用CALIPSO和MODIS数据,根据532nm波长的衰减后向散射系数β’532(Z)和双波长信号比χ’的SCA法对气溶胶和云进行区分;然后采用CLIM方法来进一步识别沙尘气溶胶,给出了沙尘识别的结果;再利用HYSPLIT模式和NAAPS气溶胶模式进行沙尘来源和传输过程模拟分析,并用双波长反演法初步反演了气溶胶的光学厚度值。然后利用AERONET的太阳直接辐射资料反演沙尘气溶胶的光学特性,统计分析北京地区2001~2013年期间沙尘天气情况下沙尘气溶胶的光学特性。最后利用AERONET的太阳直接辐射资料反演北京地区气溶胶的光学厚度,以及采用天空散射辐射资料反演气溶胶的单次散射反照率、复折射指数以及体积谱分布等光学特性参数,统计分析北京地区2002~2013年气溶胶光学特性的季节性变化。研究结果如下:(1)从各光学特性参数的空间分布图可以得出气溶胶和云的空间分布情况及其分布高度;结合采用SCA和CLIM方法可以较好的区分气溶胶和云以及识别沙尘气溶胶。(2)以2013年3月9~11日典型沙尘天气作为个例分析的结果表明:北京地区沙尘天气情况下,沙尘气溶胶的退偏振比在0.1~0.4之间,色比通常大于0.3,且沙尘的分布高度一般在4km以下。通过采用HYSPLIT模式和NAAPS气溶胶模式模拟分析发现此次沙尘起源于南疆盆地和内蒙古中西部地区,符合我国沙尘天气传输路径中的偏西路径型。在沙尘传输过程中,沙尘天气对北京的空气质量影响显著,主要污染物从PM2.5转换为PM10。本文采用双波长迭代反演法初步反演了此次沙尘暴对北京地区造成的沙尘天气情况下沙尘气溶胶的光学厚度,分别为0.534和0.621。(3)2001年~2013年的北京沙尘天气分析结果:北京沙尘天气期间受沙尘粒子的影响,气溶胶光学厚度值较大,随波长的增大而减小,在波长440nm处最大,平均值约为1.2;气溶胶Angstrom波长指数97.62%均聚集在0.7以下,说明北京沙尘天气期间粒子较大;沙尘天气期间单次散射反照率随波长增加而增加,平均值约为0.93;复折射指数实部在波长675nm处最大,平均约为1.55,虚部在440nm处最大,平均值达到0.006;总的不对称因子平均值约为0.72;北京地区沙尘天气期间气溶胶粒子谱型成双峰分布,且以粗模态粒子为主,其峰值随光学厚度的增大而增大,粗模态粒子的峰值半径平均约为2.6μm;北京地区的沙尘天气主要集中在春季和冬季,且经过一系列有效的沙尘治理手段,北京地区的受沙尘天气影响的天数呈减小的趋势。(4)北京地区气溶胶光学特性具有很强的季节性变化:春季和冬季的气溶胶光学厚度平均值大于夏季和秋季;北京地区Angstrom指数春季和冬季较小,春季的Angstrom指数平均值最小(0.93),这主要是因为北京地区春季和冬季是沙尘天气的多发季节,有大量的粗沙尘粒子存在造成的;而夏季和秋季主要是人为污染型细粒子气溶胶,所以α较大,分别是1.21和1.12。从AERONET数据反演得到的降水量发现,北京地区降水量较小的春季和冬季对应的气溶胶的光学厚度值较大,降水量较大的夏季和秋季气溶胶光学厚度值相对较小,说明降水对气溶胶冲刷对大气有一定的清洁作用。北京地区气溶胶体积谱分布呈现明显的季节性变化,夏季以细模态粒子为主,且比其他季节的体积浓度都大;春季由于受到沙尘粗粒子气溶胶的影响而呈现以粗模态粒子为主的特点,春季的粗模态粒子的体积浓度最大(0.13μm3μm-2),约是细模态粒子体积浓度的2.5倍。(5)在气候和辐射模型中北京地区的单次散射反照率春夏秋冬四个波段的均值分别为0.90、0.92、0.88、0.86;不对称因子在440、675、870、1020nm四个波段的均为0.66。复折射指数实部为1.52,虚部为0.0118。
[Abstract]:With the development of economy and the acceleration of the process of urbanization, the problem of air pollution in Beijing and its surrounding area is becoming more and more serious, and has a serious impact on the living environment of human. Therefore, it is of vital importance to study the long-term aerosol observation in Beijing and to know the optical characteristics of the aerosol in the atmosphere of air pollution. In this paper, the optical properties of the aerosol in Beijing area are studied by using the interactive data language IDL (Interactive Data Language) processing data in combination with the MODIS data, the CALIPSO data and the AERONET observation network data. First of all, the typical sand-dust weather in March of 2013 is analyzed, and the CALLIPSO and MODIS data are adopted to distinguish the aerosol and the cloud according to the attenuation of the 532 nm wavelength and the SCA method of the two-wavelength signal is used to distinguish the aerosol and the cloud, and then a CLIM method is adopted to further identify the dust aerosol, The results of sand-dust identification are given. The model of HYSPLIT and NAAPS is used to simulate the dust source and the transmission process, and the optical thickness of the aerosol is initially inverted by the double-wavelength inversion method. The optical characteristics of the dust aerosol are then inverted by using the solar direct radiation data of AERONET, and the optical characteristics of the dust aerosol in the sand and dust weather in Beijing area from 2001 to 2013 are analyzed. finally, the optical thickness of the aerosol in the Beijing area is inverted by using the solar direct radiation data of the AERONET, and the optical characteristic parameters such as a single scattering albedo, a complex refraction index and a volume spectrum distribution of the aerosol are inverted by using the sky scattered radiation data, Statistical analysis of the seasonal variation of aerosol optical properties in Beijing from 2002 to 2013. The results are as follows: (1) The spatial distribution of the aerosol and the cloud and the distribution height of the aerosol and the cloud can be obtained from the spatial distribution diagram of each optical characteristic parameter; and the aerosol and the cloud can be better distinguished and the dust aerosol can be identified by combining the SCA and the CLIM method. (2) The results of the analysis of the typical sand-dust weather from March 9 to 11,2013 show that the depolarizing ratio of the dust aerosol is between 0.1 and 0.4, the color ratio is usually more than 0.3, and the distribution height of the dust is generally less than 4km. By using the HYSPLIT model and the NAAPS aerosol model, it is found that this dust originated from the south Xinjiang basin and the central and western part of Inner Mongolia, and is in accordance with the west-west path type in the sand-dust weather transmission path in China. In the process of sand transport, the dust weather has a significant impact on the air quality in Beijing, and the main pollutants are converted from PM2.5 to PM10. In this paper, the optical thickness of the dust aerosol in the dust and dust in Beijing area due to the dust storm is obtained by the double-wavelength iterative inversion method, which is 0.534 and 0.621, respectively. (3) The results of the study on the dust weather in Beijing from 2001 to 2013: the influence of the dust particles during the Beijing dust weather, the large value of the aerosol optical thickness, the decrease with the increase of the wavelength, the maximum at the wavelength of 440 nm and the average value of about 1.2; The aerosol Angstrom wavelength index is 97.62%, which is below 0.7, indicating that the particles are large during the sand-dust weather in Beijing; the single-scattering albedo increases with the increase of the wavelength, the average value is about 0.93; the real part of the complex refractive index is the largest at the wavelength of 675 nm, and the average is about 1.55, the average value of the total asymmetry factor is about 0.72; the average value of the total asymmetry factor is about 0.72; the aerosol particle spectrum type is a bimodal distribution during the dust weather in the beijing area, and the peak value of the aerosol particle is increased with the increase of the optical thickness, The average radius of the coarse-mode particles is about 2.6. m u.m. The dust weather in Beijing area is mainly concentrated in spring and winter, and the number of days affected by the sand-dust weather in Beijing is decreasing. (4) The optical characteristics of the aerosol in Beijing have a strong seasonal change: the average of the aerosol optical thickness in the spring and winter is greater than that in the summer and autumn; the Angstrom index in Beijing is smaller in spring and in winter, and the average value of the Angstrom index in the spring is the smallest (0.93). This is mainly because the spring and winter of Beijing are the multi-season of sand-dust weather, and there is a large number of coarse sand-dust particles, while the summer and fall are mainly artificial pollution-type fine-particle aerosol, so it is relatively large, which is 1.21 and 1.12, respectively. The precipitation in Beijing is relatively small in spring and winter, and the optical thickness of the aerosol in summer and autumn is relatively small. It is indicated that the precipitation has a certain cleaning effect on the atmosphere. The distribution of the aerosol volume in the Beijing area shows a significant seasonal change, with fine-mode particles as the main in the summer and larger than the volume concentration in other seasons; the spring is mainly characterized by coarse-mode particles due to the influence of the dust-coarse-particle aerosol, The volume concentration of the coarse-modal particles in the spring is the largest (0.13. mu.m-m3. mu.m-2), which is about 2.5 times the volume concentration of the fine-mode particles. (5) In the climate and radiation model, the mean value of the single-scattering albedo in Beijing is 0.90, 0.92, 0.88, 0.86, and the asymmetry factor is 0.66 in the four bands of 440,675,870 and 1020 nm, respectively. The real part of the complex refractive index is 1.52 and the imaginary part is 0.0118.
【学位授予单位】:安徽农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X513

【相似文献】

相关期刊论文 前10条

1 黄成荣;;气溶胶:并不是我们看到的那样简单[J];沙漠与绿洲气象;2009年03期

2 丁珏;王庆涛;刘义;应梦侃;;雾环境二次气溶胶生长过程的数值研究[J];力学学报;2013年02期

3 倪守邦;;国外气溶胶发生装置研制概况[J];冶金安全;1982年01期

4 章小平,王立治,周明煜,杨绍晋,钱琴芳;秋冬季节北京地区气溶胶物理特性的垂直分布规律[J];科学通报;1983年05期

5 胡秀清,张玉香,张广顺,黄意玢,王永宽;中国遥感卫星辐射校正场气溶胶光学特性观测研究[J];应用气象学报;2001年03期

6 李霞,杨青,吴彦;乌鲁木齐地区雪和雨对气溶胶湿清除能力的比较研究[J];中国沙漠;2003年05期

7 江刚;植物产生的异戊二烯可在大气中形成二次有机气溶胶[J];中国环境科学;2004年03期

8 胡睿,方黎,郑海洋,朱元,张玉莹,孔祥和,周留柱,顾学军,张为俊,鲍健,熊鲁源;若干芳香族化合物气溶胶单粒子的在线测量[J];量子电子学报;2005年03期

9 赵海波;郑楚光;;水滴清除气溶胶过程的随机算法和数值模拟[J];应用数学和力学;2006年10期

10 徐建中;孙俊英;秦大河;任贾文;王晓香;;中国第二次北极科学考察沿线气溶胶可溶性离子分布特征和来源[J];环境科学学报;2007年09期

相关会议论文 前10条

1 高军;张旭;;室内气溶胶稀疏颗粒相动力学判定依据[A];全国暖通空调制冷2010年学术年会论文集[C];2010年

2 李霞;杨青;吴彦;;乌鲁木齐地区雨雪对气溶胶湿清除能力的比较研究[A];新世纪气象科技创新与大气科学发展——中国气象学会2003年年会“大气气溶胶及其对气候环境的影响”分会论文集[C];2003年

3 王亚强;张小曳;曹军骥;王丹;;中国西北粉尘源区气溶胶中碳酸盐稳定同位素组成及源区示踪意义[A];中国颗粒学会2004年年会暨海峡两岸颗粒技术研讨会会议文集[C];2004年

4 张兴赢;庄国顺;陈建民;吴洪波;王晓;薛华欣;;二氧化硫在矿物气溶胶颗粒物表面的复相反应研究[A];第二届全国环境化学学术报告会论文集[C];2004年

5 于军营;仝海杰;张韫宏;;丙三醇/氯化钠/水混合气溶胶的结构随湿度变化的红外光谱研究[A];第十五届全国光散射学术会议论文摘要集[C];2009年

6 杨红龙;李磊;卢超;陈星登;刘爱明;;深圳城市气溶胶物理光学特性的观测研究[A];城市气象论坛(2012年)·城市与气候变化论文集[C];2012年

7 刘畅;刘永春;马庆鑫;马金珠;贺泓;楚碧武;李俊华;郝吉明;;矿质气溶胶颗粒的在线制备及其在烟雾箱研究中的应用[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年

8 宗鹏程;魏晓奕;;不同混合方案对气溶胶辐射特性的影响[A];第六届长三角气象科技论坛论文集[C];2009年

9 孙玉稳;董晓波;齐作辉;姜岩;赵志军;;不同天气条件下石家庄市区气溶胶分布研究[A];第28届中国气象学会年会——S8大气成分与天气气候变化的联系[C];2011年

10 李家骅;丁珏;翁培奋;刘丽颖;;雾霾天气气溶胶颗粒物动力学特性的研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年

相关重要报纸文章 前4条

1 福州肺科医院呼吸内科副主任医师 翁恒;盐气溶胶吸入治疗呼吸道疾病[N];健康报;2009年

2 采访人 本报记者 贾敏;气溶胶的“冷暖面孔”[N];中国气象报;2013年

3 汪安璞;寻找控制污染的利器[N];科技日报;2002年

4 本报记者 姬钢;空气除菌消毒设备蜂拥入市[N];中国环境报;2003年

相关博士学位论文 前10条

1 陆晓慧;新型常压软电离技术及其在有机气溶胶质谱分析中的应用[D];复旦大学;2014年

2 王富;中国东部地区气溶胶—云相互作用卫星遥感建模研究[D];电子科技大学;2015年

3 汪阳;镁盐气溶胶吸湿性动力学与热力学的自发与受激拉曼谱学研究[D];北京理工大学;2015年

4 钟蕾;H9N2禽流感病毒在鸡群中气溶胶传播的分子机制及PA-X蛋白在H9N2病毒中功能初探[D];扬州大学;2014年

5 张舒婷;南京雾、霾及其转化特征观测研究[D];南京信息工程大学;2015年

6 邓高峰;室内空气颗粒污染物检测与控制技术研究[D];北京化工大学;2016年

7 李黎;天然源二次气溶胶组成、分布以及来源研究[D];上海大学;2009年

8 康辉;生物成因气溶胶的时空特征、来源及其环境意义:[D];中国科学技术大学;2012年

9 许万智;北京地区气溶胶光学特性与辐射效应的观测研究[D];中国气象科学研究院;2012年

10 马良;气溶胶颗粒逆排旋流去除原理与应用[D];华东理工大学;2014年

相关硕士学位论文 前10条

1 魏邦海;气溶胶和冰水两相粒子的散射特性[D];南京信息工程大学;2015年

2 祝存兄;南京北郊多功能激光雷达边界层气溶胶观测[D];南京信息工程大学;2015年

3 王娅冰;大气层中超细气溶胶团簇生长的热力学性质研究[D];南京信息工程大学;2015年

4 李琦;南京市区夏季气溶胶吸湿活化特性及PM_(2.5)成分的分析研究[D];南京信息工程大学;2015年

5 齐海;基于卫星遥感数据对中国陆地气溶胶光学特性及其垂直分布的研究[D];中国海洋大学;2015年

6 郑艳艳;介质阻挡放电协同催化降解苯乙烯的研究[D];浙江大学;2016年

7 罗涛;LA-ICP-MS分析过程中ICP引起的元素分馏效应研究[D];中国地质大学;2015年

8 柴艺淳;大气气溶胶和气象条件对京津冀地区区域性雾霾的影响[D];中国海洋大学;2015年

9 陈静;4种树种挥发物分析及对SOA的影响研究[D];北京林业大学;2016年

10 安晓丹;基于卫星遥感的气溶胶与云和降水相互作用研究[D];长江大学;2016年



本文编号:2498820

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2498820.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a9cc0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com