滚齿加工切削力分析及切削参数优化
[Abstract]:With the rapid development of manufacturing industry, people's living standard is improving constantly, and people's diversity of products and individualized demand stimulate manufacturing industry to innovate technology and create new products. As one of the basic transmission parts in the manufacturing industry, the demand for gear is increasing day by day, and the precision and performance requirements are also improved. Gear hobbing cutting is one of the main ways of gear machining, and the production efficiency is higher on the basis of satisfying the demand of products. Because the hobbing process is a complex multi-blade intermittent cutting process, the complexity of the process makes it necessary to find a more effective method to analyze the cutting mechanism in order to understand the cutting force of the hobbing cutting parameters. The influence of cutting temperature and tool wear has laid a foundation for the development of hobbing technology and made the traditional hobbing cutting more energy efficient and efficient. Based on the geometric motion relation between hob and workpiece in the process of hobbing, the geometric simulation model of hobbing machining is constructed on the platform of SolidWorks software, and the process of hobbing cutting is simulated in order to establish the three-dimensional model of finite element simulation. Calculation and analysis of the cutting force in the hobbing process lay the foundation. Genetic algorithm is used to optimize the hobbing cutting parameters to reduce the production cost, improve the processing efficiency, reduce the waste of resources caused by trial cutting, and maximize the benefit of the enterprise. The main work of this paper is as follows: firstly, the shape and size of chip obtained from hob teeth are analyzed by using the mathematical model of hobbing motion relationship. Based on the kinematic relationship between hob and workpiece in machining process, the mathematical models of 2-D and 3D hobbing states are established, and the coordinate points on the motion trajectory of hob teeth in 2D and 3D states are solved by using MATLAB. The cutting area of each tooth of hob teeth is analyzed. Taking KYTool as the SolidWorks plug-in, the SolidWorks is redeveloped with C language, which can be used to simulate the geometric process by using the spatial coordinate points of the cutter teeth according to the instruction, to study the cutting volume of each tooth of the hob teeth, and to analyze the cutting state of the cutting edge of the cutter teeth. At the same time, the coordinates of the points on the surface of the 3D chip model are extracted by using the SolidWorks secondary development method, and the validity of the extracted results is verified. Secondly, the workpiece model and chip model obtained by SolidWorks geometric simulation are used to calculate the cutting force of hobbing gear by analytic method and finite element method, respectively. In the former, the spatial coordinates of the points on the surface of the chip 3D model are extracted, and the cutting force is calculated by the micro-element method using the chip shape. The latter introduces the 3D model of workpiece into ABAQUS for hobbing simulation, calculates the cutting force of hobbing, and compares the results of the two to verify the correctness of the calculation. The influence of hobbing parameters on cutting force is analyzed by finite element simulation, which provides a theoretical basis for the selection of cutting parameters. Finally, the cutting parameters and cutting power in the hobbing process are studied. The experiment of hobbing cutting is designed to measure the cutting power of the hobbing teeth. The experimental average cutting power is compared with the analytical average cutting power to verify the correctness of the calculation results. The multi-objective optimization of hobbing parameters is carried out by genetic algorithm (GA), which makes the hobbing achieve the goal of minimum cost and shortest processing time. This study provides technical support for further mastering the mechanism of hobbing, and points out a new research method for the new hobbing machine-high-speed dry hobbing, which can provide accurate 3D model for the finite element simulation of hobbing. In order to achieve "rolling instead of grinding."
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG612
【相似文献】
相关期刊论文 前10条
1 周华,倪谷来;滚齿机挂轮计算机选取法的改进[J];上海水产大学学报;2000年04期
2 刘其洪;基于开放的滚齿机挂轮选配系统的设计与实现[J];机械;2002年04期
3 王细洋;滚齿机挂轮自动选配系统[J];机床与液压;2002年06期
4 赵文波,惠军涛,邓小玲;滚齿机差动挂轮选择程序[J];矿山机械;2003年06期
5 陈燕 ,徐东风 ,张宇宙;计算机辅助选择滚齿机挂轮[J];现代机械;2003年04期
6 ;我国最大的滚齿机制造成功[J];中国有色冶金;2005年02期
7 魏赣龙,付津平;累加计算法配滚齿挂轮[J];机械工人.冷加工;2005年03期
8 马国亮,曹秋霞;滚齿机差动挂轮计算方法[J];煤矿机电;2005年03期
9 左倩;;滚齿机爆刀原因初探[J];工具技术;2009年12期
10 郑春云;;巧妙解决5330滚齿机的搬迁定位难题[J];黑龙江冶金;2010年04期
相关会议论文 前3条
1 刘忠常;是复庆;;瑞士米克隆滚齿机的修理(MIKRON 102.05 EP小模数高精度万能滚齿机)[A];设备维修与改造技术论文集[C];2000年
2 张崴汉;姜春雨;姬国栋;;滚齿机分度传动链的误差分析与计算[A];十三省区市机械工程学会第五届科技论坛论文集[C];2009年
3 陈就;刘丰林;徐晓刚;;三轴数控联动滚齿机YK3125总体设计[A];2010年重庆市机械工程学会学术年会论文集[C];2010年
相关博士学位论文 前6条
1 陈永鹏;高速干切滚齿多刃断续切削空间成形模型及其基础应用研究[D];重庆大学;2015年
2 陶晓杰;滚齿误差及补偿技术研究[D];合肥工业大学;2006年
3 刘润爱;零传动滚齿机关键技术研究与应用[D];重庆大学;2006年
4 高志强;ZFWZ12型滚齿机数控改造的研究[D];沈阳农业大学;2008年
5 陈国荣;面向服务的滚齿机故障诊断模式及关键支撑技术研究[D];重庆大学;2011年
6 黄强;零传动滚齿机精度控制及颤振抑制技术研究[D];重庆大学;2008年
相关硕士学位论文 前10条
1 马江波;基于Hadoop的滚齿机故障信息分析平台与分析技术研究[D];重庆大学;2016年
2 吕盈;滚齿加工切削力分析及切削参数优化[D];山东大学;2017年
3 谢小卿;滚齿机调整参数计算系统开发[D];重庆大学;2008年
4 胡林桥;网络智能滚齿机故障诊断及维护系统设计与应用研究[D];重庆大学;2012年
5 贾焕飞;网络智能滚齿机终端系统支持平台的研究与应用[D];重庆大学;2012年
6 谢瑞木;干法滚齿切削理论及其工艺参数化优化方法研究[D];浙江大学;2013年
7 刘小旭;滚齿振动动力学仿真分析及颤振抑制方法研究[D];重庆大学;2015年
8 贾斐;面向服务型制造的滚齿机备件资源配置研究[D];重庆大学;2014年
9 刘明辉;滚齿机精切硬齿面齿轮的动态测试与有限元模态分析[D];辽宁工程技术大学;2002年
10 李先广;面向绿色制造的高速干式切削滚齿机设计与评价技术研究[D];重庆大学;2003年
,本文编号:2408283
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2408283.html