当前位置:主页 > 科技论文 > 交通工程论文 >

震后混凝土弯箱梁桥病害成因与维修加固技术研究

发布时间:2018-03-15 20:04

  本文选题:混凝土弯箱梁桥 切入点:地震 出处:《长安大学》2014年硕士论文 论文类型:学位论文


【摘要】:关于混凝土弯梁桥、箱梁的理论分析、设计、施工的研究已经很多成果,但是在关于混凝土弯箱梁桥这种相对新颖的桥梁研究方面成果却较少,特别是对于地震后混凝土弯箱梁桥的研究成果更少,因此研究地震后混凝土弯箱梁桥不但可以完善桥梁结构设计理论,还可以丰富桥梁结构类型,促进混凝土弯箱梁桥的推广应用,实现桥梁结构的健康持续发展,具有重要的意义。 本文以西安某震后弯桥为工程依托,首先对桥梁震后的病害展开全面系统的检查分析,通过对桥梁病害的检查结果,简单推断出引起此次桥梁病害的可能原因;然后采用有限元软件MIDAS/CIVAL对该桥梁病害产生的几种因素在两种模型下展开了数值分析,对混凝土弯箱梁桥在结构恒载作用下、预应力效应、温度作用、不同地震等级、最不利荷载组合等几种工况展开了系统分析,,得出了混凝土弯箱梁桥在这几种情况下的内力分布情况以及支座的约束反力、偏移。 综合混凝土弯箱梁桥外观病害检查的初步判断结果和桥梁有限元软件的数值分析结果,对桥梁的病害原因展开系统全面的分析,得出如下结论: (1)通过数值分析可以看出:两种混凝土弯箱桥桥梁模型下的桥梁内力分布表现出混凝土弯梁桥典型的弯扭耦合效应; (2)温度升高造成曲线梁端部横向力不断增大,边墩限位装置承载力较弱,对于曲线梁桥,极易在温度及其他荷载作用下,引起横向限位装置损坏; (3)根据数值分析结果可以看出:地震中的横桥向的地震力和纵桥向的地震力对限位支座影响不大;通过5种最不利荷载效应组合结果可知,即使在桥梁不计预应力效应的正常使用状态下,6#支座承受的横向力也不小于907kN,这个数值已经远远大于其所承载的横向力极值230kN,所以,在地震过程中边墩的支座很容易遭到破坏; (4)依据该混凝土弯箱梁桥两种有限元数值模型内力及支座相应的分析与评价,确定引起桥梁病害的主要原因为地震作用及内力累积综合效应、支座限位装置较弱以及下部结构设计不合理。 在得出桥梁病害原因的基础上提出了该桥梁维修加固的建议和维修加固的主要内容;最后对桥梁成功的进行了维修加固过程中的加固监控。
[Abstract]:A concrete curved girder bridge, box girder analysis, design theory, construction research has many achievements, but on the results of bridge of concrete curved box girder bridge is the relatively new but less, especially for the research results after the earthquake of concrete curved box girder bridge is less, so the study of Concrete Curved Box Girder Bridges after the earthquake not only can improve the structure of the bridge design theory, but also enrich the bridge structure type, promote the popularization and application of concrete curved box girder bridge, bridge structure health and sustainable development, has important significance.
This paper takes the Xi'an earthquake curved bridge, on the bridge after the earthquake damage analysis firstly systematically check, through the bridge disease inspection results, simply infer possible causes of the disease of the bridge; and then by several factors of finite element software MIDAS/CIVAL on the bridge under the two models launched numerical analysis of concrete curved box girder bridge structure under dead load, prestressing effect, temperature effect, different earthquake levels, the most unfavorable load operating conditions are analyzed, the concrete curved box girder bridges in these cases, the distribution of internal force and the bearing constraint force, offset.
A comprehensive analysis of the causes of bridge diseases is made based on the preliminary judgement results of the concrete disease inspection and the numerical analysis results of the bridge finite element software.
(1) through numerical analysis, it can be seen that the internal force distribution of two kinds of concrete curved box bridge models shows typical bending torsional coupling effects of concrete curved girder bridges.
(2) the transverse force at the end of the curved beam increases with the increase of temperature, and the bearing capacity of the side pier limiting device is weak. For curved girder bridges, it is easy to damage the lateral limiting devices under the action of temperature and other loads.
(3) according to the results of numerical analysis show that cross bridge in the earthquake to the seismic force and longitudinal seismic force on the limit bearing little effect; by 5 of the most disadvantageous load effect combination results, even in the bridge regardless of prestressing effect under normal use, 6# support withstand lateral forces also not less than 907kN, this value has been far greater than the extreme value of 230kN, so the lateral force, bearing pier are vulnerable to damage during the earthquake;
(4) according to the analysis and evaluation of the internal force and support of the two finite element numerical models of the concrete curved box girder bridge, the main cause of the bridge damage is the comprehensive effect of earthquake action and internal force accumulation. The supporting device is weak and the design of the substructure is unreasonable.
On the basis of obtaining the causes of bridge diseases, the suggestions for bridge maintenance and reinforcement and the main contents of maintenance and reinforcement are put forward. Finally, the reinforcement monitoring of the bridge is carried out during the maintenance and reinforcement process.

【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U445.7

【参考文献】

相关期刊论文 前10条

1 蒋志刚,刘滋银;平面曲线梁桥支座位移对内力的影响[J];湖南交通科技;1998年04期

2 郑振飞,吴庆雄;广义梁格法计算弯梁桥径向水平荷载的横向分布[J];福州大学学报(自然科学版);1999年03期

3 王亚勇;;结构抗震设计时程分析法中地震波的选择[J];工程抗震;1988年04期

4 高学奎,朱f^;近场地震动输入问题的研究[J];华北科技学院学报;2005年03期

5 刘良林;王全凤;沈章春;;基于弹性总输入能的地震波选择方法[J];华侨大学学报(自然科学版);2009年02期

6 高远;魏志刚;王庆宽;;浅谈桥梁抗震分析方法[J];吉林交通科技;2009年01期

7 王亚勇,刘小弟,程民宪;建筑结构时程分析法输入地震波的研究[J];建筑结构学报;1991年02期

8 景启明,刘庆义,张文芳;桥梁时程分析所用加速度地震波的模拟研究[J];山西建筑;2002年07期

9 陈振中,刘爱东;工程场地设计地震波选择实例[J];勘察科学技术;1995年06期

10 李明昊;;高层建筑结构的非线性时程分析[J];四川建筑;2006年01期



本文编号:1616601

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1616601.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户66bb1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com