大跨度钢箱梁悬索桥温度所致结构静力响应(英文)
发布时间:2021-08-10 13:01
目的:温度对大跨度桥梁的力学性能影响显著。针对大跨度钢箱梁悬索桥,本文采用数值方法分析日温度变化引起的结构静力响应,对比设计车荷载,以评估温度静力效应的影响。创新点:1.基于数值方法对比大跨度悬索桥温度静力效应与设计车荷载效应,评估温度效应的影响;2.阐明悬索桥主要构件温度效应对总体温度效应的贡献及相互之间的影响。方法:1.建立现场环境和结构响应的结构健康监测系统,并进行长期监测;2.通过精细化有限元分析方法实现桥梁温度荷载和温度效应的精准数值计算。结论:1.温度对大跨度悬索桥跨中位移的影响明显,其一天的变化约是设计车荷载位移的10%;箱型主梁横向温差是导致桥面横向倾斜的主要因素。2.箱梁温度应力显著大于车荷载引起的应力;部分次要构件的温度应力成为主要荷载效应。3.主缆竖向倾角越大,温度应力越大;吊杆温度效应主要受其长度和两端相对变形的影响。4.桥塔温度效应不仅受其自身温度的影响,也会受到来自主缆温度响应的较大影响。5.本文结论是基于一天温度变化的影响,而温度效应在更大时间尺度上的影响会更为严重。
【文章来源】:Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2020,21(07)EISCICSCD
【文章页数】:13 页
【文章目录】:
1 Introduction
2 Engineering background
2.1 Humber Bridge
2.2 Humber Bridge SHM system
3 FE models
3.1 FE model for thermal analysis
3.2 FE model for structural analysis
4 Thermal analysis of the suspension bridge
5 Structural static response analysis
5.1 Static responses due to design vehicle load
5.2 Temperature-induced static responses
5.2.1 Temperature-induced vertical displacement at the mid-span
5.2.2 Temperature-induced lateral inclination of the bridge deck at the mid-span
5.2.3 Temperature-induced strain on the box girder
5.2.4 Temperature-induced strain in the main cable
5.2.5 Temperature-induced strain on the hanger
5.2.6 Temperature-induced strain on the tower
6 Conclusions
Contributors
Conflict of interest
【参考文献】:
期刊论文
[1]连续退化和随机冲击下基于状态的结构维修策略优化(英文)[J]. Xiao-sheng ZHANG,Jian-qiao CHEN,Jun-hong WEI. Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2019(04)
[2]基于实时监控的碾压混凝土坝施工仿真(英文)[J]. Qian-wei WANG,Deng-hua ZHONG,Bin-ping WU,Jia YU,Hao-tian CHANG. Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2018(05)
[3]一种基于Kalman滤波和能量原理的实时损伤识别方法(英文)[J]. Xing-huai HUANG,Shirley DYKE,Zhao-dong XU. Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2015(02)
本文编号:3334109
【文章来源】:Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2020,21(07)EISCICSCD
【文章页数】:13 页
【文章目录】:
1 Introduction
2 Engineering background
2.1 Humber Bridge
2.2 Humber Bridge SHM system
3 FE models
3.1 FE model for thermal analysis
3.2 FE model for structural analysis
4 Thermal analysis of the suspension bridge
5 Structural static response analysis
5.1 Static responses due to design vehicle load
5.2 Temperature-induced static responses
5.2.1 Temperature-induced vertical displacement at the mid-span
5.2.2 Temperature-induced lateral inclination of the bridge deck at the mid-span
5.2.3 Temperature-induced strain on the box girder
5.2.4 Temperature-induced strain in the main cable
5.2.5 Temperature-induced strain on the hanger
5.2.6 Temperature-induced strain on the tower
6 Conclusions
Contributors
Conflict of interest
【参考文献】:
期刊论文
[1]连续退化和随机冲击下基于状态的结构维修策略优化(英文)[J]. Xiao-sheng ZHANG,Jian-qiao CHEN,Jun-hong WEI. Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2019(04)
[2]基于实时监控的碾压混凝土坝施工仿真(英文)[J]. Qian-wei WANG,Deng-hua ZHONG,Bin-ping WU,Jia YU,Hao-tian CHANG. Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2018(05)
[3]一种基于Kalman滤波和能量原理的实时损伤识别方法(英文)[J]. Xing-huai HUANG,Shirley DYKE,Zhao-dong XU. Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2015(02)
本文编号:3334109
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/3334109.html