Ni-Mn-In-Al合金的马氏体相变及预相变研究
[Abstract]:Ni-Mn-Z is a new type of ferromagnetic shape memory alloy, which has attracted much attention in recent years. Compared with the traditional Ni-Mn-Ga alloy, the magnetic moment difference between the austenitic phase at high temperature and the martensite phase at low temperature in this kind of alloy shows strong magnetoelastic coupling and magnetic field driven inverse martensite transformation. Therefore, there are some interesting physical effects near the martensitic transformation temperature, such as shape memory effect, magnetoresistance effect and magnetic card effect. Changing the Mn-Mn spacing by applying pressure is an effective method to adjust the martensitic transformation temperature of the alloy. The pressure can be either external pressure or small radius element substitution. In this paper, we have prepared Ni50Mn34In16-xAlx (x0. 5)-like alloys by using small radius Al instead of In, in Ni50Mn34In16 alloys. The results show that the martensite transformation temperature increases gradually after substitution and the pre-martensite transformation behavior is observed before the martensite transformation temperature of Ni50Mn34In15.5Al0.5 alloy due to the enhancement of magnetoelastic coupling. Study on Premartensite Transformation of Ni50Mn34In15.5AI0.5 Alloy; the premartensite phase is a mesophase between austenite and martensite, which has a near-cubic structure and can be regarded as a micromodulation structure of the austenitic phase. This phenomenon has been widely studied in Ni-Mn-Ga alloys. A large number of studies show that it comes from magnetoelastic coupling. However, due to the narrower temperature range and the smaller magnetic moment difference in the premartensite transformation process, the physical effects of premartensite transformation are rarely reported. Recent studies have shown that Ni43Mn41Co5Sn11 synthesized by hot pressing has intermediate phase transition behavior. The magnetoelastic coupling of Ni50Mn34In15.5Al0.5 alloy is also greatly enhanced by the internal pressure produced by doping of Al in the alloy. Electrical transport, thermal and magnetic measurements show that the sample exhibits a two-step continuous structural / magnetic phase transition, i.e., the intermediate phase transition behavior is obvious before martensitic transformation, and the first-order transformation behavior can be reflected by thermal hysteresis and magnetic hysteresis. The microstructure of the alloy was observed by optical microscope at varying temperature in situ. It is further proved that the microstructure modulation before the appearance of martensite stripe at low temperature, that is, the existence of premartensite phase. Ni50Mn34In15.5Al0.5 alloy has great magnetic moment difference in the process of pre-martensite transformation. Therefore, the temperature of premartensite transformation can be reduced by applying external magnetic field, which indicates that the appearance of premartensite phase can be attributed to the magnetoelastic coupling. The magnetic field drive inverse martensite transformation will produce larger magnetoresistance. At the same time, the magnetoresistance and magnetic card effect near room temperature in Ni50Mn34In15Al alloy will be increased by increasing the peak and width of magnetic entropy.) the magnetoresistance and magnetic card effect of Ni-Mn base alloy near room temperature will also be increased. Ni50Mn34In16Al alloy has high magnetoresistance and magnetic card effect near room temperature. There are first order martensite transformation and secondary magnetic transformation of austenite phase near room temperature. In the process of martensitic transformation, the magnetic moment difference and the thermal lag are large. The measured results show that the Ni _ (50) mn _ (34) in _ (16) Al alloy has not only a large magnetoresistance (peak value of -58%) but also a large continuous magnetic entropy change at room temperature under the action of a magnetic field of 50 kOe. The corresponding peak values of first-order and second-order phase transitions are 21 J/Kg K and -8.2 J/Kg K, respectively. At the same time, due to the small hysteresis loss, the first-order phase transition has the same effective refrigeration capacity as the second-order phase transition value, reaching 150 J / Kg.
【学位授予单位】:湖北大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG139.6
【相似文献】
相关期刊论文 前10条
1 刘宗昌;;关于马氏体相变机制的研究[J];热处理;2012年02期
2 徐祖耀;;马氏体相变热力学[J];上海冶金;1979年01期
3 M.柯亨;钟群鹏;;《马氏体相变》讲座 第一讲 马氏体相变的一般性质[J];材料科学与工程;1983年01期
4 张金岷;;马氏体相变的相干声子模型[J];山东工学院学报;1983年04期
5 王笑天;;关于参加1982年国际马氏体相变会议的简报[J];金属热处理;1982年11期
6 王笑天;;参加1982年国际马氏体相变会议的情况汇报[J];金属热处理;1983年03期
7 唐电;;氧化锆的马氏体相变[J];材料科学与工程;1986年04期
8 蒋正行;李玉昌;张建新;;马氏体相变和碳的扩散[J];河北工学院学报;1987年02期
9 徐祖耀;;马氏体相变研究的进展和瞻望[J];金属学报;1991年03期
10 侯家玺,葛艳玲;利用最优化理论研究马氏体相变中不变应变原理[J];焊接技术;1997年02期
相关会议论文 前10条
1 韦广梅;贾秀丽;史志铭;王川;;应力诱发下的多晶集合体宏细观马氏体相变模拟[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 冯伟;张灿辉;;马氏体相变中相界面剪切应力计算[A];“力学2000”学术大会论文集[C];2000年
3 谢汉庭;;对《马氏体相变与马氏体》书内图2-87上两个不同看法[A];第十五届华东地区热处理年会暨华东地区热处理年会三十周年纪念活动论文摘要集[C];2006年
4 卢慧娟;李亮;姜世全;;变温马氏体相变瞬态温度场的三维有限元分析[A];山东省金属学会理化检验学术委员会理化检验学术交流会论文集[C];2009年
5 石玮;郭正洪;戎咏华;陈世朴;徐祖耀;;原子力显微镜测定马氏体相变切变角新方法[A];第十一次全国电子显微学会议论文集[C];2000年
6 张骥华;邓华铭;陈树川;徐祖耀;;反铁磁转变与马氏体相变耦合的阻尼机制[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
7 陈树川;徐祖耀;张骥华;;Cu-Zn-Al合金乌氏体相变内耗与马氏体稳定比[A];内耗与超声衰减——第二次全国固体内耗与超声衰减学术会议论文集[C];1988年
8 朱小明;黄红波;林俊;李世民;夏元复;;核电站三回路海水中不锈钢腐蚀的相变研究[A];Hyperfine Interaction and Nuclear Solid State Physics--Proceedings of CCAST (World Laboratory) Workshop[C];2001年
9 龚明;;铜基形状记忆合金显微拉伸加卸载原位观测[A];2010年海峡两岸材料破坏/断裂学术会议暨第十届破坏科学研讨会/第八届全国MTS材料试验学术会议论文集[C];2010年
10 李哲;徐坤;周效锋;阳叶军;敬超;张金仓;;Ni-Co-Mn-Sn哈斯勒合金磁场诱导马氏体相变的热力学效应研究[A];2011中国功能材料科技与产业高层论坛论文集(第三卷)[C];2011年
相关博士学位论文 前10条
1 杨哲一;Ti-V-Al基轻质记忆合金的马氏体相变与力学行为[D];哈尔滨工业大学;2016年
2 耿永红;时效调控型Fe-Ni-Co-Al-Ta-B合金的热弹性马氏体相变研究[D];上海交通大学;2015年
3 闫绍盟;铁磁性形状记忆合金的马氏体相变与晶体学[D];华中科技大学;2011年
4 崔玉亭;NiMnGa合金的热力学效应和应用功能研究[D];重庆大学;2004年
5 宋固全;马氏体相变材料的宏细观本构模型研究[D];清华大学;1996年
6 李聪;钛合金应力诱导马氏体相变影响因素及力学性能研究[D];湖南大学;2013年
7 牛建钢;氧对β-Ti_3Nb合金马氏体相变的影响[D];北京科技大学;2014年
8 李哲;新型Ni-Mn基四元哈斯勒合金的相变热力学效应和磁性能研究[D];上海大学;2011年
9 高丽;Ni-Mn-Ga-RE磁性记忆合金的微观结构与马氏体相变和力学性能[D];哈尔滨工业大学;2007年
10 丰焱;Ni-Mn-In基合金的马氏体相变与结构和性能[D];哈尔滨工业大学;2009年
相关硕士学位论文 前10条
1 陈海霞;Ti基非晶复合材料马氏体相变的研究[D];大连交通大学;2015年
2 陈俊豪;热变形条件对T92钢马氏体相变过程及性能的影响[D];天津理工大学;2015年
3 费小平;Cu掺杂NiMnIn合金结构相变与磁性能[D];南京理工大学;2015年
4 宋远伟;细晶Ni-Mn-Ga合金的马氏体相变和磁热性能[D];哈尔滨工业大学;2015年
5 柴宝;CuAlNi合金马氏体相变中的反问题[D];哈尔滨工业大学;2015年
6 覃事品;亚稳态奥氏体不锈钢中应变诱导马氏体相变演化及其本构模型[D];北京理工大学;2015年
7 徐奕辰;Ni-Fe-Ga-Co磁性形状记忆合金马氏体相变及微观结构研究[D];东北大学;2013年
8 李春光;Ni-Mn基Heusler铁磁形状记忆合金磁性质及马氏体相变理论研究[D];哈尔滨理工大学;2013年
9 董妍;Cu掺杂Ni_(49)Fe_(18)Ga_(27)Co_6和Ni_(51.5)Mn_(26.5)Ga_(22)磁性形状记忆合金的马氏体相变及微观结构研究[D];东北大学;2014年
10 李艳波;Ni-Fe-Ga-(Co)铁磁形状记忆合金的晶体结构、马氏体相变和磁性能的研究[D];东北大学;2014年
,本文编号:2261527
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2261527.html