羽衣甘蓝花青素苷积累特性及相关调控基因表达分析
本文选题:羽衣甘蓝 + 叶色 ; 参考:《沈阳农业大学》2017年硕士论文
【摘要】:羽衣甘蓝(Brassica oleracea L.var.acephala DC)是二年生草本观叶花卉,广泛应用于世界各地的园林绿化中。作为一种观叶植物,羽衣甘蓝叶色多变,可以产生白色、乳黄色、粉色、红色和紫色等不同颜色的叶片,同时,因其在短期内有较强的耐寒性,在晚秋、冬季及早春应用广泛。羽衣甘蓝多变的叶色不仅具有观赏价值,其所含的丰富花青素和类胡萝卜素还对人类健康有益。为揭示羽衣甘蓝着色程度与色素分布、含量与组分的关系以及花青素苷合成过程中相关转录因子的调控作用,本文通过徒手切片法、分光光度计法、高效液相色谱-质谱联用技术(HPLC-MS)及半定量RT-PCR方法分别对羽衣甘蓝所含主要色素的组织分布、含量、花青素苷组成成分及花青素苷合成过程中相关调控基因的表达进行了研究,获得的主要研究结果有:1.羽衣甘蓝的粉色、红色、紫色试材的呈色均是由于花青素的积累造成的,紫黑色试材的呈色则是花青素和叶绿素共同作用的结果;在粉色、红色、紫色和紫黑色试材的胚轴和莲座期心叶中,花青素均在临近表皮的1-2层细胞呈集中分布;白色试材中未发现有花青素分布。2.在红色系试材中,花青素含量随叶色的加深大致呈递增趋势。即在无光合色素(叶绿素和类胡萝卜素)干扰的情况下,随花青素含量增加,心叶颜色加深。花青素与叶绿素同时存在使得'Black 10'叶片颜色呈紫黑色,缺少花青素使得'White 9'叶片呈白色。3.四个由粉色到紫黑色的试材共鉴定出8种花青素苷组分,均为矢车菊素苷,其中1种未发生酰基化、4种单酰基化、3种双酰基化。四个试材中,矢车菊-3-芥子酰阿魏酰-双葡萄糖苷-5-葡萄糖苷的含量均为最高,为主要花青素苷组分,其次是矢车菊-3-芥子酰-双葡萄糖苷-5-葡萄糖苷。4.羽衣甘蓝花青素苷合成转录因子BoMYB2在红色和粉色试材中均得到表达,且在红色试材中的表达量明显高于粉色试材,BoMYB1和BobHLH1只在红色试材中得到表达,推测BoMYB2对花青素苷积累起关键调控作用,BoMYB1和BobHLH1起微效调控作用。本文研究结果可为羽衣甘蓝叶色的遗传和育种提供基础数据,也可为园林植物花色相关研究提供信息。
[Abstract]:Brassica oleracea L.var.acephala DC (Brassica oleracea L.var.acephala) is a biennial herbaceous foliage flower, which is widely used in landscaping all over the world. As a leaf-watching plant, kale leaves can produce white, milky yellow, pink, red and purple leaves with different colors. At the same time, they are widely used in late autumn, winter and early spring because of their strong cold tolerance in the short term. The changeable leaf color of kale not only has ornamental value, but also contains rich anthocyanins and carotenoids. In order to reveal the relationship between coloring degree and pigment distribution, the relationship between content and component, and the regulation of transcription factors in anthocyanin synthesis, the method of hand-cut and spectrophotometer was used to study the relationship between coloring degree and pigment distribution of Brassica oleracea and the regulation of transcription factors in the process of anthocyanin synthesis. High performance liquid chromatography-mass spectrometry (HPLC-MS) and semi-quantitative RT-PCR were used to study the tissue distribution, content, anthocyanin components and the expression of related regulatory genes in the process of anthocyanin synthesis in Brassica oleracea. The main results of the study were: 1: 1. The pink, red and purple color of kale is caused by the accumulation of anthocyanin, while the color of purple black is the result of the combination of anthocyanin and chlorophyll; in pink, red, Anthocyanins were concentrated in 1-2 layers of cells near the epidermis in the cotyls of purple and purple black materials and in the central leaves of rosette stage, but no anthocyanin distribution was found in white materials. The content of anthocyanin increased with the deepening of leaf color. Without the interference of photosynthetic pigments (chlorophyll and carotenoid), the color of heart leaves deepened with the increase of anthocyanin content. The presence of anthocyanin and chlorophyll makes the leaves of Black 10 'appear purple and black, and the leaves of White 9' are white. 3 without anthocyanin. A total of 8 anthocyanin components were identified from four samples from pink to purple black, all of them were cyanosin, one of which was not acylated and 4 were monoacylated and 3 were diacylated. Among the four materials, the content of -3- erucidyl ferulic acid-bisglucoside-5-glucoside was the highest, which was the main anthocyanin component, followed by that of cornflower-3-mustard acyl-bisglucoside-5-glucoside. The expression of BoMYB2, a transcription factor of anthocyanin synthesis in Brassica oleracea, was expressed in both red and pink samples, and the expression level in red sample was significantly higher than that in pink sample and only in red sample. It is speculated that BoMYB2 plays a key role in anthocyanin accumulation. BoMYB1 and BobHLH1 play a minor role in regulating anthocyanin accumulation. The results can provide the basic data for the inheritance and breeding of the leaf color of Brassica oleracea, and also provide information for the study of flower color of garden plants.
【学位授予单位】:沈阳农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S681.9;Q943.2
【相似文献】
相关期刊论文 前7条
1 樊荣辉;黄敏玲;;花青素苷调控研究进展[J];中国细胞生物学学报;2013年05期
2 王璐;戴思兰;金雪花;黄河;洪艳;;植物花青素苷转运机制的研究进展[J];生物工程学报;2014年06期
3 胡可;韩科厅;戴思兰;;环境因子调控植物花青素苷合成及呈色的机理[J];植物学报;2010年03期
4 孙翊;李慧;王亮生;戴思兰;;一种快速有效分析烟草花冠中花青素苷的方法[J];植物学报;2011年02期
5 王忠华;俞超;吴月燕;;葡萄花青素苷生物合成研究进展[J];生物技术通报;2012年09期
6 高燕会;黄春红;朱玉球;童再康;;植物花青素苷生物合成及调控的研究进展[J];中国生物工程杂志;2012年08期
7 孙卫;李崇晖;王亮生;戴思兰;;菊花不同花色品种中花青素苷代谢分析[J];植物学报;2010年03期
相关会议论文 前2条
1 郭柏年;陈永曦;梁文志;何凤华;何志伟;;依靠高新技术,开拓植物黄金——提取“中华果王桑果中的花青素苷”[A];提高全民科学素质、建设创新型国家——2006中国科协年会论文集[C];2006年
2 张超;王彦杰;王维宁;董丽;;牡丹‘洛阳红'花瓣斑部和非斑部花青素苷积累和花青素苷合成相关基因表达研究[A];中国观赏园艺研究进展(2013)[C];2013年
相关博士学位论文 前2条
1 韩科厅;花青素苷合成关键结构基因导入对菊花花色的影响[D];北京林业大学;2010年
2 牛姗姗;MYB对杨梅果实花青素苷合成的调控及其机制[D];浙江大学;2011年
相关硕士学位论文 前4条
1 齐宇;玫瑰花青素苷合成相关基因的克隆及表达分析[D];山东农业大学;2016年
2 陈品文;amiRNA介导的FaCRYs基因对草莓花青素苷合成的影响研究[D];四川农业大学;2016年
3 潘志超;羽衣甘蓝花青素苷积累特性及相关调控基因表达分析[D];沈阳农业大学;2017年
4 唐杏姣;光照对菊花花青素苷合成与呈色的作用[D];北京林业大学;2012年
,本文编号:1790822
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/1790822.html