桉树SWEET基因家族的分析
[Abstract]:The SWEET family of genes is a new sugar transporter, which mainly contains two MtN3/saliva transmembrane domains, while a few prokaryotes contain only one. The MtN3/saliva family of eukaryotes mainly consists of seven transmembrane helices, but 16 of the 17 reported members of the SWEET family in Arabidopsis contain seven transmembrane helices. A gene contains six transmembrane helixes (AT1G66770). Three transmembrane MtN3/saliva domains in prokaryotes are replicated, resulting in the production of two MtN3/saliva domain SWEET proteins in eukaryotes. Because of this special structure, the prokaryote family of genes is often referred to as Semi SWEETs. Less, recent studies have shown that SWEET family genes may act as sugar transporters or interact with ion transporters to promote ion transport and regulate different physiological processes including transporting carbohydrates, development and environmental adaptability. The main results are as follows: 1. All the genes of Eucalyptus and Arabidopsis containing MtN3/Saliva domain were retrieved from the phytozome database. Among them, 52 homologous sequences were found in Eucalyptus, and one Eucalyptus homologous sequence was found in Arabidopsis. Seventeen sequences contained two MtN3/saliva domains, and the transmembrane region was greater than or equal to six, all of which were defined as SWEET family. Of the 52 Eucalyptus homologous sequences, 40 sequences had more than or equal to six transmembrane domains. Except EgSWEET9c had three MtN3/saliva domains, the rest of the genes contained two MtN3/saliva domains. Six sequences have two MtN3/saliva domains, but less than six transmembrane domains, which may be members of the SWEET family. Six sequences have only one MtN3/saliva domain, which is similar to the structure of Simi SWEETs in prokaryotes. 947 genes from 37 different species contained MtN3/saliva gene. The 947 genes were divided into 11 branches and some OG branches. These genes were divided into four subfamilies A1, A2, A3 and B1. The A1 subfamily was mainly the third branch, including AtSWEET4-8 and six Eucalyptus genes. The A2 subfamily was mainly the fifth branch, including AtSWEET16, AtSWEET1 and six eucalyptus. Tree genes, A3 subfamily is mainly 1,2,4 three branches, including AtSWEET 1-3 and 13 Eucalyptus genes, B1 subfamily is mainly 6-11 branches, including AtSWEET 9-15 and 24 Eucalyptus genes, there are two genes not in the above subfamily, belong to OG branching. Among the 40 gene sequences with transmembrane region greater than or equal to 6, the number of amino acids in the two Mt N3/saliva family domains was about 90, and the open reading frame (ORF) of these 40 genes ranged from 1208 BP to 7084 bp. The open reading frame ranged from 529 BP to 4615 bp, and the number of exons ranged from 3 to 6. 4 On the basis of chromosome location information provided by phytozome database, 52 SWEET family genes containing MtN3/saliva domain were located on Eucalyptus chromosomes. There were 11 chromosomes in eucalyptus, but these 52 SWEET families were retrieved. Only 45 genes were located on chromosomes, and most of them appeared in clusters. The other 7 genes may not be located on spliced chromosomes. The 45 genes located on chromosomes were mainly distributed on 8 chromosomes. 5 expression level analysis showed that 34 genes were highly expressed at the tip of stem and 37 genes were on the surface of young leaves. The expression of 36 genes was higher in the old leaves, 31 genes were the highest in xylem, and 40.6 genes were induced in phloem. The results showed that 11 genes were up-regulated, 2 genes were down-regulated and 7 genes were basically unchanged under glucose treatment. Under the treatment of NaCl solution, 11 genes were up-regulated, 2 genes were down-regulated, and 3 genes were basically unchanged. Under the treatment of NaCl solution, 11 genes were up-regulated, 2 genes were down-regulated and 7 genes were basically unchanged. These results provide a reference for understanding the SWEET family genes of Eucalyptus.
【学位授予单位】:华南农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S792.39;Q943.2
【相似文献】
相关期刊论文 前10条
1 庞尔丽;;蛋白质结构域研究进展简述[J];生物学通报;2013年03期
2 孟刚;代方银;陈聪;童晓玲;鲁成;;WW结构域及相关蛋白在肿瘤发生中的作用[J];蚕学通讯;2013年03期
3 陈建业,张f[;“溴”结构域研究进展[J];国外医学(分子生物学分册);2002年03期
4 马素参,黄海明,彭隽敏,俞强,任瑞宝,高友鹤;快速构建蛋白质结构域克隆库的方法[J];中国生物化学与分子生物学报;2003年04期
5 谢雪英;李鑫;曹晨;;基于复杂网络的蛋白质结构域组进化分析[J];生物物理学报;2010年12期
6 焦豫良;王淑军;吕明生;房耀维;刘姝;;多结构域酶的结构域进化关系[J];生命的化学;2012年01期
7 万一;訾静;张琨;张志敏;张月娟;王琰;王军;;金黄色葡萄球菌蛋白A(SpA)Z结构域串联体的克隆、表达和筛选[J];生物工程学报;2012年12期
8 戚正武;;蛋白质的结构域[J];生物科学信息;1991年02期
9 周康靖,林玉娟,傅珠玑,潘克桢;天花粉蛋白分子的结构域[J];科学通报;1992年23期
10 熊舜斌,廉德君,林旭伟,王蔚青,许根俊;大鼠乳酸脱氢酶辅酶结合结构域的克隆与表达[J];科学通报;1998年11期
相关会议论文 前10条
1 孙婧;敬闰宇;吴镝;李梦龙;李益洲;;基于机器学习方法的结构域预测[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
2 孟刚;代方银;陈聪;鲁成;;WW结构域及相关蛋白在肿瘤发生中的作用[A];第十届家(柞)蚕遗传育种及良种繁育学术研讨会论文集[C];2013年
3 王长振;杨俊涛;周宇;丛建波;先宏;郭林超;唐丽;吴可;;LSECtin CRD结构域的运行性研究[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
4 李鹏云;丁怡;吴蓓丽;舒翠玲;沈倍奋;饶子和;;FKBP52 N端结构域的晶体结构[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年
5 宋婀莉;田瑞;马素参;高友鹤;;PDZ结构域低丰度配体的筛选方法[A];中国蛋白质组学第三届学术大会论文摘要[C];2005年
6 应跃斌;宋见惠;陈枢青;;大肠杆菌T蛋白独立结构域的活性研究[A];浙江省生物化学与分子生物学学术交流会论文集[C];2005年
7 吕丹;张君;张毓;陈慰峰;;UNC5CL表达调控及诱导表达[A];第六届全国免疫学学术大会论文集[C];2008年
8 金美芳;丁向明;仇灏;吴士良;周迎会;;多肽:N-乙酰氨基半乳糖转移酶2原核与真核表达及其蓖麻蛋白样结构域同源建模[A];第八届全国复合糖生物化学与分子生物学学术会议论文摘要论文集[C];2004年
9 丰竹;张斌;刘谨;周严;周海军;彭小忠;袁建刚;强伯勤;;人ENCI的cDNA的克隆、表达与功能研究[A];中国生物化学与分子生物学会第八届会员代表大会暨全国学术会议论文摘要集[C];2001年
10 冯延琼;石亚伟;;以PDZ结构域为靶标的中药有机小分子配体筛选[A];第三届泛环渤海(七省二市)生物化学与分子生物学会——2012年学术交流会论文集[C];2012年
相关重要报纸文章 前1条
1 记者 王春;我学者认知一个新的蛋白质结构域[N];科技日报;2004年
相关博士学位论文 前10条
1 黄静;环腺苷酸受体蛋白的结构与功能研究[D];复旦大学;2013年
2 李海云;水稻白叶枯病菌磷酸二酯酶PdeR互作蛋白鉴定及其功能研究[D];中国农业科学院;2015年
3 魏玺;MDMX通过与p53蛋白的二次作用抑制p53 DNA结合功能的分子机制[D];天津医科大学;2015年
4 刘璐;一株海洋来源链格孢聚酮合酶及真菌非还原型聚酮合酶PT结构域系统研究[D];中国海洋大学;2015年
5 许浩然;可溶性鸟苷酸环化酶H-NOX结构域一氧化碳结合态的结构研究[D];吉林大学;2016年
6 吕荟;裂殖酵母Dis312的结构与功能研究[D];中国科学技术大学;2016年
7 李慧;Smurf1与PIP5K1C之间的负反馈调控在肺癌发生与肺癌转移过程中的研究[D];华东师范大学;2013年
8 陈振行;人脆性X智力障碍蛋白FMRP氨基端结构域的结构和功能研究[D];中国农业大学;2016年
9 王海波;组蛋白修饰识别影响DNMT3A定位的结构基础和生物学功能[D];清华大学;2015年
10 王峰;一种新型转录因子MrkH的结构与功能研究[D];山东大学;2016年
相关硕士学位论文 前10条
1 乔玮博;Caldicellulosiruptor kronotskyensis 2002木聚糖内切酶的分子催化机理及结构域多态性[D];沈阳农业大学;2015年
2 薛丁榕;水稻白叶枯病菌c-di-GMP信号代谢酶相关基因PXO_03877和PXO_01021的功能分析[D];中国农业科学院;2015年
3 龚庆天;基于结构域的基因功能预测算法开发及应用[D];复旦大学;2014年
4 段英俊;PICK1蛋白与几种配体相互作用研究[D];山西大学;2014年
5 林子玉;SpA单结构域突变体组合噬菌体文库的构建及体外进化筛选[D];安徽医科大学;2015年
6 李娜娜;pSn受体在PRRSV-ADE中的作用及PRRSV感染小鼠模型的探讨[D];河南农业大学;2014年
7 彭统全;串联表达蛋白A/G/L Ig结合结构域及其在口蹄疫鉴别诊断中的应用[D];东北农业大学;2015年
8 徐曼;Cry1A类蛋白交换结构域对杀虫活性影响的研究[D];东北农业大学;2015年
9 王涛涛;水稻花器官发育相关的OsREP1结构域分析[D];江西农业大学;2012年
10 程诗萌;CDK9的SUMO化修饰研究[D];华东师范大学;2013年
,本文编号:2205033
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2205033.html