干旱和NaCl胁迫下木薯GB含量及BADH基因的表达
[Abstract]:Betaine aldehyde dehydrogenase (betaine aldehyde dehydrogenase,BADH) is a key enzyme in the synthesis of betaine (glycine betaine,GB). In order to detect the difference of BADH gene expression in different tissues of cassava (Manihot esculenta) and to explore the variation of BADH gene expression profile under drought and NaCl stress, the BADH gene of cassava was analyzed and identified by bioinformatics. Locate the position of MeBADHs on chromosome and determine the cis acting element of 5'terminal upstream sequence; QRT-PCR was used to detect the difference of expression of BADH gene in SC5 roots, tubers, stems and leaves of cassava cultivars. The transcription level of MeBADHs gene was also detected under PEG-6000 simulated dehydration stress, NaCl stress and natural drought stress. The change of GB content in cassava was determined by correlation kit. The results showed that two MeBADHs genes were expressed in all tissues, and the expression level in tuber root was significantly higher than that in root (P0.05). Under PEG-6000 simulated drought, compared with 0 h, MeBADH1 and MeBADH2 were in leaves and stems at 1h and 2 h, respectively. The expression level of root and tuber root showed little change. Under the condition of NaCl treatment, the expression of MeBADH1 in leaves at 8 h was significantly higher than that in 0 h (P0.01), while the expression level of MeBADH2 in stem and root was not different under different treatment time. The expression level of MeBADHs at 1 h was significantly higher than that at 0 h (P0.01). The expression of MeBADH1 and MeBADH2 in stem and root were significantly higher than that in 0 d (P0.01) at 6 d and 18 d, respectively. Under the condition of natural water shortage and drought, the GB content fluctuated and increased slightly. Under the condition of NaCl treatment, the expression of GB was stable in the early stage, and the response was intense at 8 h, which showed a downward trend, and the GB content at 24 h was significantly lower than that at 0 h (P0.05). Under natural drought stress, the content of GB increased gradually, and reached its peak at 9 and 15 days, which was significantly higher than that of 0 days (P0.05). The results provide theoretical basis for further study on molecular drought resistance mechanism of cassava and breeding of new varieties.
【作者单位】: 海南大学农学院;中国热带农业科学院热带生物技术研究所/农业部热带作物生物学与遗传资源利用重点实验室;中国环境科学研究院;
【基金】:国家自然科学基金项目(No.31201603) 2016农业部热作技术试验示范项目(No.15162130106232022) 海南省自然科学基金项目(No.312051) 国家高技术研究发展计划(863计划)子课题(No.2012AA101204-2) 海南省重大科技项目子课题(No.ZDZX2013023-1) 海南省研究生创新课题(S03) 环境保护部生物多样性保护专项(No.2096001006)
【分类号】:S533
【相似文献】
相关期刊论文 前10条
1 蒋春志,张艳敏,郭北海,温之雨,李辉;转BADH基因小麦的水分生理特性研究[J];华北农学报;2002年04期
2 张勇;余刚;冯俊;毕玉;迪娜·塔布斯;潘洪玉;;四翅滨藜BADH基因的克隆、序列分析及其原核表达[J];吉林农业大学学报;2012年06期
3 卢德赵,祝水金,钱前,王慧中,颜美仙,黄大年;BADH基因转化水稻的方法比较[J];中国水稻科学;2003年04期
4 余爱丽,徐景升,周会,张木清,陈如凯;玉米BADH基因的克隆与序列分析[J];分子植物育种;2004年03期
5 孙耀中,东方阳,陈受宜,杜保兴;氯化钠胁迫下转BADH基因水稻农艺性状的主成分及聚类分析[J];中国农学通报;2003年03期
6 刘志华;姜振峰;王宏燕;王丹;王争;许春风;;转BADH基因大豆对盐碱土壤根际微生物量碳氮的影响[J];作物杂志;2014年03期
7 郭学民,刘永军,东方阳,孙耀中,杨晓玲;转BADH基因水稻叶片气孔特征的扫描电镜观察研究[J];西北植物学报;2004年07期
8 林秀峰,邢少辰,刘志铭,王艳;盐胁迫对转BADH基因水稻R1的影响[J];吉林农业科学;2005年05期
9 邓川;高翎;张君;宋冰;王丕武;;甜菜碱合成酶CMO、BADH基因无抗生素标记植物表达载体的构建[J];种子;2011年06期
10 李东魁;王蒂;张俊莲;司怀军;柳娜;;转BADH基因马铃薯无性繁殖二代耐盐性检测[J];植物生理学通讯;2007年05期
相关会议论文 前3条
1 王伟伟;孟庆伟;杨兴洪;;转BADH基因烟草提高抗冷性的研究[A];第六届中国植物逆境生理学与分子生物学学术研讨会论文摘要汇编[C];2010年
2 杨兴洪;梁峥;贾虎森;邱念伟;卢从明;;转BADH基因烟草提高对高温和强光的抗性[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
3 燕丽萍;夏阳;梁慧敏;王珍珍;李双云;刘翠兰;庞彩红;;紫花苜蓿转BADH基因及其后代耐盐性分析[A];中国草学会饲料生产委员会第15次饲草生产学术研讨会论文集[C];2009年
相关博士学位论文 前1条
1 余爱丽;斑茅抗逆性评价及其BADH基因的克隆表达[D];福建农林大学;2004年
相关硕士学位论文 前5条
1 张正国;农杆菌介导BADH基因转化马铃薯的耐盐研究[D];东北农业大学;2011年
2 张学英;过量表达BADH基因提高小麦低温耐性的生理机制研究[D];山东农业大学;2008年
3 李玉全;不同耐盐棉花品种细胞结构、mRNA差异表达及其BADH基因的序列分析[D];山东农业大学;2003年
4 王s,
本文编号:2328996
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2328996.html