基于CNN的手势姿态估计在手势识别中的应用
[Abstract]:Gesture recognition is an important research direction in the field of human-computer interaction. Gesture is used as human-computer interface. It is natural, intuitive and close to human communication habits, so it has a wide application prospect. When the gesture recognition algorithm is applied to human-computer interaction, it is often required that the user's gesture plane be parallel to the camera imaging plane, that is, perpendicular to the horizontal plane. This paper presents an algorithm for gesture recognition using gesture attitude estimation method. By using convolutional neural network to estimate the human hand attitude in the depth map, the spatial coordinates of the key points are obtained and then used for gesture recognition, so that the atypical gestures can be recognized as typical gestures. The main work of this paper is as follows: 1. Get depth information based on Kinect, track and segment hand gesture in complex scene. The gesture depth map which can input convolutional neural network can be obtained by morphological processing and data normalization. 2. 2. For the convolution network model for attitude estimation, the accuracy is improved by adding the middle layer of the nonlinear gesture model and using the multi-resolution gesture depth map as the network input. The detection speed is improved by reducing the number of gesture nodes that need to be estimated. Experimental results show that the proposed network model can reduce the average error of gesture attitude estimation by 2.21mm. 3. Based on the ratio between finger tip distance and finger root distance, the curvature of finger can be represented by the ratio of finger tip to finger root distance, and the spatial coordinates of each node can be obtained by gesture attitude estimation. The distance between the knots is further calculated, so this paper applies the ratio of finger bending to the recognition of guessing hand gesture. The average recognition rate of gesture recognition algorithm is 95.8 and the recognition rate of atypical gesture is 94.6.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前6条
1 操小文;薄华;;基于卷积神经网络的手势识别研究[J];微型机与应用;2016年09期
2 蔡娟;蔡坚勇;廖晓东;黄海涛;丁侨俊;;基于卷积神经网络的手势识别初探[J];计算机系统应用;2015年04期
3 陶丽君;李翠华;张希婧;李胜睿;;基于Kinect传感器深度信息的动态手势识别[J];厦门大学学报(自然科学版);2013年04期
4 何超;胡章芳;王艳;;一种基于改进DTW算法的动态手势识别方法[J];数字通信;2013年03期
5 曹雏清;李瑞峰;赵立军;;基于深度图像技术的手势识别方法[J];计算机工程;2012年08期
6 吴江琴;高文;陈熙霖;;基于数据手套输入的汉语手指字母的识别[J];模式识别与人工智能;1999年01期
相关硕士学位论文 前10条
1 胡苏阳;基于Kinect深度数据及组合特征的静态手势识别研究[D];南昌大学;2016年
2 曹海波;基于Kinect深度信息的静态手势识别方法研究[D];山东大学;2016年
3 吴正文;卷积神经网络在图像分类中的应用研究[D];电子科技大学;2015年
4 范文婕;基于深度图像的手势识别研究及应用[D];南昌大学;2015年
5 何鹏程;改进的卷积神经网络模型及其应用研究[D];大连理工大学;2015年
6 王松林;基于Kinect的手势识别与机器人控制技术研究[D];北京交通大学;2014年
7 郑斌珏;基于Kinect深度信息的手势识别[D];杭州电子科技大学;2014年
8 莫舒;基于视觉的手势分割算法的研究[D];华南理工大学;2012年
9 常亚南;基于HMM的动态手势识别[D];华南理工大学;2012年
10 许可;卷积神经网络在图像识别上的应用的研究[D];浙江大学;2012年
,本文编号:2297251
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2297251.html