气候变化对美国麻州水资源系统供水量影响风险评价研究
本文选题:气候变化 + 水资源系统 ; 参考:《哈尔滨工业大学》2014年博士论文
【摘要】:自工业革命以来,大气中的二氧化碳含量不断增加,改变了气候系统原有的能量平衡,致使全球气候发生改变。水循环系统作为气候系统的一个重要组成部分,在全球气候系统发生变化的同时,水循环系统也必将受到影响,最终导致全球水资源的时空分配发生变化。目前,气候变化对水资源的影响受到了国际上的广泛关注,已开展了大量研究。 现有的研究多利用大气环流模式(GCM)获得未来气象要素数据,直接输入到相应的水文模型或者水资源模型中来评价气候变化对水资源系统的影响,但此类方法在减少GCM不确定性及解决GCM数据有限性问题方面存在缺陷。针对目前研究方法体系的不足,本研究提出一种新的评价方法——反向法,该方法不仅能够充分利用多种GCM来减少单一GCM所带来的不确定性问题,而且能够有效结合GCM数据准确和随机模型产生数据量大的优势,并可同时量化气候要素和水文要素的统计要素对水资源系统的影响。本研究将该方法应用于美国麻州水资源系统(MWRA)和我国云南省骑马岭水库,取得了较为满意的结果。主要研究内容和结论如下: (1)通过对MWRA水资源系统进行深入分析,构建了MWRA水资源模型,同时利用基准期的观测数据对模型的模拟能力进行了检验。 (2)根据水资源数据的特点,构建了逐一标准化时间序列模型(ARMA),利用MWRA水资源系统中1950~1999年Quabbin水库的流域净流量(地表径流-水库实际蒸散量),对ARMA模型和周期时间序列模型(PARMA)的参数进行估计,通过对比证明ARMA模型的模拟能力整体上优于PARMA模型。 (3)为了进行全面研究,分别选取IPCC提供的高、中、低三种温室气体排放情景即A2情景、A1B情景和B1情景,共112种GCM对MWRA水资源系统所在区域的降水量和气温进行预测,多数GCM结果显示该区域在2050s时段(2036~2065年)和2080s时段(2066~2095年)的降水量和气温较基准期(1950~1999年)有所增加。 (4)利用MWRA水资源系统在基准期的观测值对水文模型ABCD的参数进行了校验,利用GCM获得的气象要素驱动ABCD水文模型来对MWRA水资源系统所在区域未来水文变化进行模拟预测,结果显示月流域净流量均值与基准年观测值的差值在不同月份存在差异,年流域净流量的均值与基准年观测值的差值则无显著变化。 (5)选用可靠度作为MWRA水资源系统的评级指数,采用反向法对MWRA水资源系统在未来两个时段由气候变化引起的风险进行评价,最终结果显示:当流域净流量年际标准方差为基准期观测值的100%、110%、120%、130%和140%的情况下,未来两个时段MWRA水资源系统在A2情景、A1B情景和B1情景下均呈现为高风险值。麻州水资源委员会应根据情况对MWRA水资源系统进行必要的调整以应对未来气候变化可能带来的负面影响。 (6)为探究反向法的适用性,将反向法应用于我国云南省境内的骑马岭水库,,通过已建立的气候响应方程和可靠度指数的阈值,对关键因子的阈值进行了识别:在基准期(1960~2004年)观测值年际标准方差100%、110%、120%、130%和140%的情况下,流域净流量年均值的阈值分别为基准期观测值的92.8%、94.3%、95.9%、97.4%和99.0%,阈值的识别为该地区制定政策减弱气候变化对水库影响提供了理论依据。
[Abstract]:Since the industrial revolution, the content of carbon dioxide in the atmosphere has been increasing, changing the original energy balance of the climate system and changing the global climate. As an important part of the climate system, the water cycle system will also be affected and eventually lead to the global climate system. The spatial and temporal distribution of water resources has changed. At present, the impact of climate change on water resources has attracted extensive international attention, and a great deal of research has been carried out.
The current research uses the atmospheric circulation model (GCM) to obtain the future meteorological elements data, directly input into the corresponding hydrological model or water resource model to evaluate the impact of climate change on water resources, but this method has defects in reducing the uncertainty of GCM and solving the limited problem of GCM data. A new evaluation method, reverse method, is proposed in this study. This method can not only fully utilize a variety of GCM to reduce the uncertainty caused by a single GCM, but also effectively combine the advantages of the accurate and random model of GCM data to produce a large amount of data, and can simultaneously quantify the combination of climatic elements and hydrological factors. The main research contents and conclusions are as follows: the application of this method to the Massachusetts water resource system (MWRA) and the Yunnan jequing reservoir in our country.
(1) through the in-depth analysis of the MWRA water resources system, the MWRA water resource model is constructed. At the same time, the simulation ability of the model is tested by the observation data of the datum period.
(2) according to the characteristics of water resources data, a one by one standardized time series model (ARMA) is constructed, and the parameters of the ARMA model and the periodic time series model (PARMA) are estimated by using the net flow of the Quabbin reservoir in the Quabbin reservoir of 1950~1999 in the water resource system, and the parameters of the ARMA model and the periodic time series model (PARMA) are estimated, and the simulation of the ARMA model is proved by comparison. The capability is better than the PARMA model as a whole.
(3) in order to carry out a comprehensive study, three scenarios of high, medium and low greenhouse gas emissions provided by IPCC, namely, A2 scenarios, A1B scenarios and B1 scenarios, were selected for the prediction of precipitation and temperature in the region of the MWRA water resource system. Most of the GCM results showed that the region was reduced in 2050s time period (2036~2065 year) and 2080s period (2066~2095 year). Water and air temperature increased over the base period (1950~1999).
(4) the parameters of the hydrological model ABCD are checked by the observation value of the MWRA water resource system at the datum period. The hydrological model of the meteorological element driven by the GCM is used to simulate the hydrological changes in the region of the MWRA water resource system in the future. The results show that the difference between the mean of the monthly net flow rate of the monthly basin and the observation value of the datum year is different. There was a discrepancy in the month, and there was no significant change in the mean value of the annual net flow of the river basin and the observed value of the base year.
(5) using the reliability index as the rating index of MWRA water resources system, the risk of MWRA water resource system caused by climate change in the next two periods is evaluated by the reverse method. The final result shows that when the annual standard variance of the net flow of the basin is 100%, 110%, 120%, 130% and 140%, the next two time periods are M The WRA water resource system presents a high risk value in A2 scenarios, A1B scenarios and B1 scenarios. The Massachusetts Water Resources Commission should make the necessary adjustments to the MWRA water resource system in response to the possible negative impacts of future climate change.
(6) in order to explore the applicability of the reverse method, the reverse method was applied to the chequan reservoir in Yunnan province of China. The threshold of the key factors was identified through the established climatic response equation and the threshold of the reliability index. In the case of the standard variance of 100%, 110%, 120%, 130% and 140% of the annual observational values of the datum period (1960~2004) The annual mean value of net flow is 92.8%, 94.3%, 95.9%, 97.4% and 99%, respectively. The recognition of the threshold provides a theoretical basis for the policy to reduce the impact of climate change on the reservoir.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TV213.4
【参考文献】
相关期刊论文 前10条
1 金菊良;刘丽;汪明武;李如忠;周玉良;;基于三角模糊数随机模拟的地下水环境系统综合风险评价模型[J];地理科学;2011年02期
2 汪美华,谢强,王红亚;未来气候变化对淮河流域径流深的影响[J];地理研究;2003年01期
3 韩冰;罗玉峰;王卫光;彭世彰;缴锡云;;气候变化对水稻生育期及灌溉需水量的影响[J];灌溉排水学报;2011年01期
4 毛炜峄;樊静;沈永平;杨青;高前兆;王国亚;王顺德;吴素芬;;近50a来新疆区域与天山典型流域极端洪水变化特征及其对气候变化的响应[J];冰川冻土;2012年05期
5 李磊;刘文丰;徐宗学;张兰影;;基于DEM的分布式水文模型前处理程序开发及应用[J];北京师范大学学报(自然科学版);2012年05期
6 张艳娇;高小红;李其江;陈强;杨军军;;气候变化情景下青海湟水流域径流变化的HIMS模拟分析[J];地理科学进展;2013年01期
7 曹丽娟;董文杰;张勇;;未来气候变化对黄河和长江流域极端径流影响的预估研究[J];大气科学;2013年03期
8 秦大河;;气候变化与干旱[J];科技导报;2009年11期
9 崔春光;彭涛;殷志远;沈铁元;;暴雨洪涝预报研究的若干进展[J];气象科技进展;2011年02期
10 郝晶晶;陆桂华;闫桂霞;吴志勇;;气候变化下黄淮海平原的干旱趋势分析[J];水电能源科学;2010年11期
相关博士学位论文 前1条
1 郭靖;气候变化对流域水循环和水资源影响的研究[D];武汉大学;2010年
本文编号:2042044
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2042044.html