离散耦合系统的稳定条件分析及牵制控制同步
发布时间:2018-01-07 05:47
本文关键词:离散耦合系统的稳定条件分析及牵制控制同步 出处:《北京交通大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 同步 Rulkov模型 Hopfield网络 牵制控制 小世界网络
【摘要】:摘要:复杂网络的稳定性分析以及同步研究已经成为了当下的热点之一,网络连接结构也越来越多样化,从规则网络到完全随机网络,从小世界网络到无尺度网络,不同的耦合结构将使系统产生不同的行为,而对这些行为的研究分析可以被应用到包括生物、金融以及互联网等领域中. 本文分为四个章节, 第一章节介绍了相关的研究背景,包括Rulkov模型的研究发展进程,混沌的相关理论以及小世界网络的构造原理等; 第二章节主要是多重时滞下离散环状耦合系统的稳定条件分析,首先研究了一个零分布特征多项式的性质,并将结果应用到神经网络中,然后把理论从低维推广到高维,从而得出了单个网络和多个子网络环状耦合结构下的稳定性条件,最后通过数值模拟验证了结论; 第三章节则是利用牵制控制实现离散神经网络的同步,具体方法就是在系统中加入自反馈控制项,利用李雅普诺夫函数法来证明其复杂系统的稳定性,并且得到了其同步准则。最后我们利用在小世界网络连接下的Rulkov模型验证其同步准则. 第四章节是对全文的总结.
[Abstract]:Abstract : The stability analysis and synchronization of complex networks have become one of the hot topics in the present . The network connection structure has become more and more diversified . From the regular network to the complete random network , from the small world network to the non - scale network , different coupling structures will lead to different behaviors of the system , and the research and analysis of these behaviors can be applied to the fields including biology , finance and the Internet . This article is divided into four chapters . The first chapter introduces the relevant research background , including the research development process , the theory of chaos and the construction principle of the small world network . The second chapter is mainly the stability condition analysis of the discrete loop coupling system with multiple time lag . First , the property of a zero distribution characteristic polynomial is studied , and the result is applied to the neural network , then the theory is extended from the low dimension to the high dimension , so that the stability conditions under the ring - coupled structure of a single network and a plurality of sub - networks are obtained , and finally the conclusion is verified by numerical simulation ; In chapter 3 , the synchronization of discrete neural networks is realized by using the control method . The method is to add the self - feedback control term to the system , and the Lyapunov function method is used to prove the stability of the complex system , and the synchronization criterion is obtained . Section IV is a summary of the full text .
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O157.5;O231
【参考文献】
相关期刊论文 前3条
1 ;Dynamics of firing patterns,synchronization and resonances in neuronal electrical activities:experiments and analysis[J];Acta Mechanica Sinica;2008年06期
2 王青云,陆启韶;噪声在慢变系统中的随机Chay神经元模型的自共振[J];动力学与控制学报;2004年03期
3 贾洪军;王江;于海涛;邓斌;魏熙乐;;Courbage神经元映射模型的随机共振研究[J];动力学与控制学报;2011年03期
,本文编号:1391247
本文链接:https://www.wllwen.com/kejilunwen/yysx/1391247.html