高精度MQ拟插值算子的构造
发布时间:2018-02-01 15:26
本文关键词: 拟插值 径向基函数 线性再生 逼近精度 出处:《东北师范大学》2017年硕士论文 论文类型:学位论文
【摘要】:在本文中,我们构造了两个新的具有较高逼近精度的Multi-Quadric(MQ)拟插值算子,记作(?),Lv.我们证明了(?)和Lv具有线性再生性,Lv具有严格保凸性.又给出了两个拟插值算子的误差分析.理论结果说明两个拟插值算子的逼近精度比一些已有的拟插值算子高,比如Wu和Schaback构造的LD.通过数值实验,将(?),Lv与一些拟插值算子进行比较,实验结果表明相比其他拟插值算子,本文所构造的两个拟插值算子具有较高的逼近精度,具有一定的应用价值.
[Abstract]:In this paper, we construct two new multi-Quadric MQ-quasi interpolation operators with higher approximation accuracy. We proved it? ) and LV have linear reproducibility and strict convexity. The error analysis of two quasi interpolation operators is given. The theoretical results show that the approximation accuracy of the two quasi interpolation operators is higher than that of some existing quasi interpolation operators. For example, Wu and Schaback construct LD. Compared with some quasi-interpolation operators, the experimental results show that compared with other quasi-interpolation operators, the two quasi-interpolation operators constructed in this paper have higher approximation accuracy and have certain application value.
【学位授予单位】:东北师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.3
【参考文献】
相关期刊论文 前2条
1 吴宗敏;SHAPE PRESERVING PROPERTIES AND CONVERGENCE OF UNIVARIATE MULTIQUADRIC QUASI-INTERPOLATION[J];Acta Mathematicae Applicatae Sinica(English Series);1994年04期
2 吴宗敏;;HERMITE—BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL BASIS FUNCTIONS[J];Approximation Theory and Its Applications;1992年02期
相关博士学位论文 前1条
1 陈荣华;径向基函数拟插值理论及其在微分方程数值解中的应用[D];复旦大学;2005年
,本文编号:1482187
本文链接:https://www.wllwen.com/kejilunwen/yysx/1482187.html