具有幂零奇点的七次Hamilton系统Abel积分的零点个数估计
发布时间:2018-03-10 09:01
本文选题:Hamilton系统 切入点:幂零奇点 出处:《数学杂志》2017年06期 论文类型:期刊论文
【摘要】:本文研究了具有幂零奇点的七次Hamilton系统的Abel积分的零点个数问题.利用Picard-Fuchs方程法,得到了Abel积分I(h)=∮_(Γh)g(x,y)dx-f(x,y)dy在(0,1/4)上零点个数B(n≤3[(n-1)/4]),其中Γ_h是H(x,y)=x~4+y~4-x~8=h,h∈(0,1/4),所定义的卵形线f(x,y)=∑(1≤4i+4j+1≤n)aijx~(4i+1)y~4j)和g(x,y)=∑(1≤4i+4j+1≤n)bijx~4iy~(4j+1)是x和y的次数不超过n的多项式.
[Abstract]:In this paper, the problem of the 00:00 number of Abel integrals for a Hamilton system with nilpotent singularities is studied. The Picard-Fuchs equation method is used. In this paper, we get the number of B n 鈮,
本文编号:1592642
本文链接:https://www.wllwen.com/kejilunwen/yysx/1592642.html