Cartesian积与邻点可区别着色之间的关系(英文)
发布时间:2018-03-23 18:31
本文选题:Cartesian积 切入点:正常边染色 出处:《浙江大学学报(理学版)》2017年05期
【摘要】:图G的一个正常k-边着色是指k种颜色1,2,…,k对图G各边的一个分配,使得任意2条相邻边染以不同的颜色.对于图G的一个正常边染色f和G中任何一个顶点x,Sf(x)或S(x)表示与顶点x关联的边在f下的颜色所构成的集合.若对于图G中任意2个相邻顶点u和v,有S(u)≠S(v),则称f为图G的邻点可区别正常边染色.对图G进行邻点可区别正常边染色所需的最少颜色数,称为G的邻点可区别正常边色数,记为χ′a(G).图G的一个正常k-全染色是指k种颜色对图G的顶点和边的一个分配,使得任意2个相邻的或相关联元素染以不同的颜色.对于图G的一个正常全染色g和G中任何一个顶点x,使用Cg(x)或C(x)来表示顶点x的颜色(在g下)以及与顶点x关联的边在g下的颜色所构成的集合.若对于G中任意2个相邻顶点u和v,有C(u)≠C(v),则称g为图G的邻点可区别全染色.图G的邻点可区别全染色所需的最少颜色数称为图G的邻点可区别正常全色数,记为χ″a(G).主要讨论了Cartesian积和2种邻点可区别染色之间的关系.
[Abstract]:A normal k- edge coloring of a graph G is a distribution of k colors 1 and 2, 鈥,
本文编号:1654667
本文链接:https://www.wllwen.com/kejilunwen/yysx/1654667.html