当前位置:主页 > 科技论文 > 数学论文 >

两类高阶非线性系统的镇定问题研究

发布时间:2018-04-03 00:07

  本文选题:快速有限时间镇定 切入点:高阶非线性系统 出处:《曲阜师范大学》2017年硕士论文


【摘要】:本文第一章介绍高阶随机非线性系统和有限时间稳定的发展情况.第二章研究有限时间稳定性定理的改进以及其在一类高阶非线性系统中全局稳定的应用.新的控制策略结合构造的李亚谱诺夫函数,在现有的结果上用来分别处理高阶和低阶非线性增长率.不需要大的控制作用,收敛时间就可以大大缩短,但是当初始状态距离原点很远时,传统的有限时间稳定方案需要很长的时间周期.最后,做出了两个仿真实例,其中包括一个实用的例子来说明所提出的策略的有效性.第三章研究一类更一般的随机高阶非线性系统的状态反馈镇定问题.在较弱的条件下,基于Backstepping设计方法和符号函数技术,设计一个光滑的状态反馈控制器,使闭环系统在区间[0,∞)上有唯一解,且闭环系统的平衡点是几乎全局渐近稳定的.最后,用一个仿真例子来证明控制方案的有效性。
[Abstract]:In the first chapter, we introduce the development of high order stochastic nonlinear systems and finite time stability.In chapter 2, we study the improvement of finite time stability theorem and its application to a class of high order nonlinear systems.The new control strategy combined with the construction of Li Ya's Bernoulli function is used to deal with the high order and low order nonlinear growth rates respectively in the existing results.The convergence time can be greatly shortened without large control effect, but when the initial state is far from the origin, the traditional finite time stabilization scheme needs a long time period.Finally, two simulation examples are given, including a practical example to illustrate the effectiveness of the proposed strategy.In chapter 3, the state feedback stabilization problem for a class of more general stochastic high order nonlinear systems is studied.Under weaker conditions, a smooth state feedback controller is designed based on the Backstepping design method and symbolic function technique. The closed-loop system has a unique solution on the interval [0, 鈭,

本文编号:1702718

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1702718.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户51eb1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com