当前位置:主页 > 科技论文 > 数学论文 >

特殊符号模式的谱任意性研究

发布时间:2018-04-30 14:12

  本文选题:幂零-雅可比 + 符号模式 ; 参考:《中北大学》2017年硕士论文


【摘要】:组合数学是基础数学中的一个分支,近年来,国内外对其研究的文献资料也越来越多.随着计算机数学的发展,组合数学成为了各个领域的研究对象.而符号模式是组合数学主要的组成部分,符号模式普遍的应用于各学科中,其主要的研究方面有:符号可解性、稳定性,符号模式矩阵的惯量、幂序列性质及其复推广等.本文主要研究组合数学中几类特殊的符号模式及其母模式是谱任意的.第一部分介绍了符号模式的研究基础和国内、外的发展形势,符号模式的一些定义、相关的一些结论以及本文主要的结论;第二部分讨论了一类含有3n个非零元的谱任意ray模式,且验证了它任意的母模式也为谱任意的;第三部分利用N-J方法证明了一类复符号模式是谱任意的,且验证了它的任意母模式的谱任意性;第四部分证明了一类复符号模式及它的任意的母模式为极小谱任意的.
[Abstract]:Combinatorial mathematics is a branch of basic mathematics. In recent years, there are more and more literature on it at home and abroad. With the development of computer mathematics, combinatorial mathematics has become the research object in various fields. Symbolic pattern is the main component of combinatorial mathematics. Symbolic pattern is widely used in various disciplines. Its main research aspects are: symbol solvability, stability, inertia of symbol pattern matrix, power sequence property and its complex generalization, and so on. In this paper, we mainly study some special symbolic patterns and their parent patterns in combinatorial mathematics, which are spectral arbitrary. The first part introduces the research foundation of the symbol pattern and the development situation in China and abroad, some definitions of the symbol pattern, some relevant conclusions and the main conclusions of this paper. In the second part, we discuss a class of spectral arbitrary ray patterns with 3n nonzero elements, and verify that any of its parent modes are spectral arbitrary, and in the third part, we prove that a class of complex symbolic patterns are spectral arbitrary by using N-J method. In the fourth part, we prove that a class of complex symbol patterns and any of its parent patterns are minimally spectral arbitrary.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O157

【相似文献】

相关期刊论文 前10条

1 刘颖;马红平;苗正科;;非负对称符号模式的惯量集(英文)[J];Northeastern Mathematical Journal;2008年04期

2 张学锋;王建中;;一个极小谱任意符号模式[J];吕梁教育学院学报;2008年03期

3 胡传峰;高玉斌;;两个新的极小谱任意符号模式[J];信阳师范学院学报(自然科学版);2010年01期

4 胡传峰;高玉斌;;两个极小谱任意符号模式[J];河南师范大学学报(自然科学版);2010年01期

5 王文娟;高玉斌;;一类极小谱任意符号模式[J];太原师范学院学报(自然科学版);2011年01期

6 付艳梅;邵燕灵;;一类特殊的极小谱任意符号模式[J];太原师范学院学报(自然科学版);2011年01期

7 崔宏宇;雷英杰;;对一类新的极小谱任意符号模式的刻画[J];内蒙古农业大学学报(自然科学版);2011年01期

8 张晓婷;张俊;;一类新的极小谱任意符号模式[J];商丘师范学院学报;2011年12期

9 高玉斌;星符号模式的嵌套蕴含稳定性[J];华北工学院学报;2003年06期

10 侯耀平;立方非负的不可约符号模式(英文)[J];数学进展;2003年06期

相关博士学位论文 前6条

1 梅银珍;组合矩阵论中惯量的研究及其应用[D];中北大学;2015年

2 余柏林;矩阵模式谱性质研究[D];电子科技大学;2011年

3 张玲;符号模式矩阵的若干问题研究[D];电子科技大学;2012年

4 于广龙;有关组合矩阵论中图谱与符号模式矩阵的研究[D];华东师范大学;2011年

5 刘卫华;图论与符号模式矩阵的性质及其在智能系统中的应用研究[D];中北大学;2013年

6 任灵枝;孤立置换集,,复方阵的行列式值域和完全拟S~*阵[D];同济大学;2006年

相关硕士学位论文 前10条

1 田浩;筛选法在谱任意符号模式研究中的应用[D];中北大学;2009年

2 胡传峰;特殊谱任意符号模式的研究[D];中北大学;2010年

3 李茜;三类极小谱任意符号模式[D];中北大学;2008年

4 马钰;本原不可幂对称符号模式矩阵的基指数[D];湖南科技大学;2015年

5 乔晓玲;几类谱任意符号模式矩阵的研究[D];中北大学;2016年

6 赵丽娟;对几个符号模式矩阵谱任意性的研究[D];中北大学;2016年

7 龙佳平;一类特殊符号模式矩阵的最小秩[D];中北大学;2016年

8 郝志远;可约符号模式的惯量刻画[D];中北大学;2017年

9 张蓉;特殊符号模式的谱任意性研究[D];中北大学;2017年

10 李丽;极小谱任意符号模式矩阵的研究[D];中北大学;2009年



本文编号:1824872

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1824872.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户767e8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com