当前位置:主页 > 科技论文 > 数学论文 >

两类非线性演化方程的精确解和守恒律问题研究

发布时间:2018-05-01 12:10

  本文选题:Qiao方程 + Gardner-KP方程 ; 参考:《昆明理工大学》2017年硕士论文


【摘要】:非线性演化方程在数学、物理学、化学、流体力学、振动力学、天体力学、生物学、生态学和财政金融等自然科学和社会科学领域有着广泛的应用.一大批数学和其他领域科学工作者长期以来致力于非线性演化方程的研究,在获得了丰硕成果的基础上不断推进非线性问题的持续发展,为人类社会的生产、生活和科学研究提供了具有重要指导意义和应用价值的结果.本文应用经典的李对称分析方法,研究两类非线性演化方程的解析解和守恒律问题.李对称分析方法是求解非线性偏微分方程和计算方程守恒律的重要理论之一,本文首先介绍了该方法的产生背景和基础理论,给出了论文后续研究过程中用到的一系列关键定理和公式.本文第二部分重点研究Qiao方程,用李对称分析求出了Qiao方程的无穷小生成子,选择无穷小生成子的两种线性组合对原方程进行对称约化,获得了对应的约化方程,并求出了群不变解.在群不变解的基础上,通过采用一种新的构造方式,获得了一批原方程的非群不变解,并通过数值模拟画图对比了群不变解和非群不变解的区别.论文根据特殊的对称,还求了方程的迭代解.最后对应于每个生成子求出了Qiao方程的非局部守恒律公式.本文第三部分研究了Gardner-KP方程.基于李对称分析,首先求出了方程的部分群不变解和迭代解.由于方程有三个独立变量,一次对称约化的方程仍然是偏微分形式,求解较为困难,为此对约化方程再次利用对称分析将方程化为各种形式的常微分方程,并采用幂级数方法,求出常微分方程的幂级数解且证明了解的收敛性,从而获得了一批原方程的幂级数解.对应于第一次约化的每个生成子,本章还求出了相应的非局部守恒律公式.论文最后对研究方法、过程和研究结果进行了必要的总结,并提出了下一步研究工作的目标和方向.
[Abstract]:Nonlinear evolution equations are widely used in the fields of mathematics, physics, chemistry, fluid dynamics, vibration dynamics, astromechanics, biology, ecology, finance and finance. For a long time, a large number of scientists in mathematics and other fields have devoted themselves to the study of nonlinear evolution equations, and on the basis of obtaining fruitful results, they have continuously promoted the sustainable development of nonlinear problems for the production of human society. Life and scientific research provide important guiding significance and application value of the results. In this paper, the classical lie symmetry analysis method is used to study the analytical solutions and conservation laws of two kinds of nonlinear evolution equations. The lie symmetry analysis method is one of the important theories for solving nonlinear partial differential equations and the conservation law of computing equations. In this paper, the background and basic theory of the method are introduced. A series of key theorems and formulas are given. In the second part of this paper, the Qiao equation is studied, and the infinitesimal generator of Qiao equation is obtained by using the lie symmetry analysis. Two linear combinations of the infinitesimal generator are selected to reduce the original equation and the corresponding reductive equation is obtained. The group invariant solution is obtained. On the basis of group invariant solution, a group of nongroup invariant solutions of the original equation are obtained by adopting a new construction method, and the difference between group invariant solution and nongroup invariant solution is compared by numerical simulation drawing. According to the special symmetry, the iterative solution of the equation is also obtained. Finally, the nonlocal conservation law formula of Qiao equation is obtained for each generator. In the third part of this paper, we study the Gardner-KP equation. Based on lie symmetry analysis, the partial group invariant solution and iterative solution of the equation are first obtained. Because the equation has three independent variables, the equation of the first degree symmetry reduction is still a partial differential form, so it is difficult to solve the equation. Therefore, the reduced equation is transformed into ordinary differential equation of various forms by symmetric analysis again, and the power series method is adopted. The power series solutions of ordinary differential equations are obtained and the convergence of the solutions is proved, and the power series solutions of some original equations are obtained. For each generator of the first reduction, the corresponding nonlocal conservation law formula is also obtained in this chapter. Finally, the paper summarizes the research methods, processes and results, and puts forward the goal and direction of the next research.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175

【参考文献】

相关期刊论文 前10条

1 李灵晓;李保安;;Gardner-KP方程的孤立波解[J];河南科技大学学报(自然科学版);2016年01期

2 李壹宏;;一类非线性波动方程的对称及守恒律[J];纺织高校基础科学学报;2013年01期

3 胡贝贝;冯大河;唐清干;;基于辅助方程法对Gardner-KP方程精确解的研究[J];安庆师范学院学报(自然科学版);2012年04期

4 杨云青;陈勇;;Prolongation Structure of the Equation Studied by Qiao[J];Communications in Theoretical Physics;2011年09期

5 李继彬;Klein-Gordon-Schrodinger方程的孤立波和周期行波解(英文)[J];云南大学学报(自然科学版);2003年03期

6 ;TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS[J];Chinese Annals of Mathematics;2002年03期

7 范恩贵,张鸿庆;齐次平衡法若干新的应用[J];数学物理学报;1999年03期

8 胡星标,李勇;DJKM方程的Bcklund变换及非线性叠加公式[J];数学物理学报;1991年02期

9 耿献国;二维Sawada-Kotera方程的Darboux变换[J];高校应用数学学报A辑(中文版);1989年04期

10 刘跃;一类非线性Schrdinger方程的柯西问题[J];高校应用数学学报A辑(中文版);1989年01期

相关硕士学位论文 前1条

1 刘晓霞;若干非线性偏微分方程(组)的Lie对称、不变解及守恒律研究[D];内蒙古工业大学;2015年



本文编号:1829287

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1829287.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4a189***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com