几类分数阶非线性椭圆方程解的存在性与集中性
本文选题:分数阶拉普拉斯算子 + 临界指数 ; 参考:《南京师范大学》2015年博士论文
【摘要】:分数阶拉普拉斯问题可以用来描述物理学、生物学、化学、金融经济、概率等领域中的许多重要现象.特别地,在概率的观点下,分数阶拉普拉斯算子被视为稳态Levy扩散过程的无穷小生成元.因此,分数阶拉普拉斯微分方程解的相关问题研究目前已成为非线性分析领域的热门研究方向之一在本论文中,我们利用非线性分析中的临界点理论和变分约化等方法研究了两类具有临界指数的分数阶椭圆方程解的存在性、多重性及分数阶非线性Schrodinger方程解的存在性和集中性,获得了一系列新的结果.具体包含以下四章内容:在第一章中,我们利用Nehari流形方法和Ljusternik-Schnirelmann筹数理论研究了一类具有临界指数的分数阶非线性Schrodinger方程.证明了方程在两种不同情形下具有基态解和catΛδ(Λ)个非平凡解.在第二章中,我们利用变分扰动方法研究了分数阶非线性Schrodinger方程解的存在性及集中性.设合理的假设下,证明了所得解集中在函数г(x)的临界点.我们所得结果推广了文献[36]和[44]的结果.在第三章中,我们研究了一类分数阶非线性椭圆方程的多峰解,其中Q(x)为正的连续有界函数.利用 Lyapunov-Schmidt变分约化方法得到,对任意的正整数七,方程具有一个七-峰的正解,且其集中在Q的严格局部极小点处.我们把文献[65]的结果推广到了分数阶情形.最后,我们利用调和扩展技术和临界点理论,研究了一类具有临界指数的非齐次分数阶Laplacian司题,证明了此类问题至少具有两个正解.同时,在一类线性正型区域上,我们获得了一个正解的不存在性结果.此结论推广了文献[85]中的不存在性结果.
[Abstract]:Fractional Laplace problem can be used to describe many important phenomena in physics, biology, chemistry, financial economy, probability and so on. In particular, in the view of probability, fractional Laplace operator is regarded as infinitesimal generator of steady-state Levy diffusion process. Therefore, the research on the solutions of fractional Laplacian differential equations has become one of the hot research directions in the field of nonlinear analysis. By using the critical point theory and variational reduction in nonlinear analysis, we study the existence, multiplicity, existence and centrality of solutions for two classes of fractional elliptic equations with critical exponents. A series of new results were obtained. In the first chapter, we study a class of fractional nonlinear Schrodinger equations with critical exponents by using Nehari manifold method and Ljusternik-Schnirelmann number theory. It is proved that the equation has a ground state solution and a nontrivial solution of cat A 未 (A) in two different cases. In chapter 2, we study the existence and centrality of solutions of fractional nonlinear Schrodinger equations by using variational perturbation method. Under reasonable assumptions, it is proved that the solution is concentrated at the critical point of the function. Our results extend the results of references [36] and [44]. In chapter 3, we study the multimodal solutions of a class of fractional nonlinear elliptic equations, where QX) is a positive continuous bounded function. By using the Lyapunov-Schmidt variational reduction method, it is obtained that for any positive integer 7, the equation has a positive solution of a seven-peak, and it is concentrated at the strictly local minimum of Q. We extend the results of [65] to the fractional order case. Finally, by using harmonic expansion technique and critical point theory, we study a class of nonhomogeneous fractional Laplacian problems with critical exponents, and prove that these problems have at least two positive solutions. At the same time, we obtain a nonexistence result of positive solutions in a class of linear positive domains. This conclusion generalizes the nonexistent results in [85].
【学位授予单位】:南京师范大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O175.25
【相似文献】
相关期刊论文 前10条
1 王德金;郑永爱;;分数阶混沌系统的延迟同步[J];动力学与控制学报;2010年04期
2 杨晨航,刘发旺;分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J];厦门大学学报(自然科学版);2005年06期
3 王发强;刘崇新;;分数阶临界混沌系统及电路实验的研究[J];物理学报;2006年08期
4 夏源;吴吉春;;分数阶对流——弥散方程的数值求解[J];南京大学学报(自然科学版);2007年04期
5 张隆阁;;一类参数不确定混沌系统的分数阶自适应同步[J];中国科技信息;2009年15期
6 陈世平;刘发旺;;一维分数阶渗透方程的数值模拟[J];高等学校计算数学学报;2010年04期
7 辛宝贵;陈通;刘艳芹;;一类分数阶混沌金融系统的复杂性演化研究[J];物理学报;2011年04期
8 黄睿晖;;分数阶微方程的迭代方法研究[J];长春理工大学学报;2011年06期
9 蒋晓芸,徐明瑜;分形介质分数阶反常守恒扩散模型及其解析解[J];山东大学学报(理学版);2003年05期
10 陈玉霞;高金峰;;一个新的分数阶混沌系统[J];郑州大学学报(理学版);2009年04期
相关会议论文 前10条
1 李西成;;经皮吸收的分数阶药物动力学模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 谢勇;;分数阶模型神经元的动力学行为及其同步[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年
3 张硕;于永光;王亚;;带有时滞和随机扰动的不确定分数阶混沌系统准同步[A];中国力学大会——2013论文摘要集[C];2013年
4 李常品;;分数阶动力学的若干关键问题及研究进展[A];中国力学大会——2013论文摘要集[C];2013年
5 李常品;;分数阶动力学简介[A];第三届海峡两岸动力学、振动与控制学术会议论文摘要集[C];2013年
6 蒋晓芸;徐明瑜;;时间依靠分数阶Schr銉dinger方程中的可动边界问题[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 王花;;分数阶混沌系统的同步在图像加密中的应用[A];第二届全国随机动力学学术会议摘要集与会议议程[C];2013年
8 王在华;;分数阶动力系统的若干问题[A];第三届全国动力学与控制青年学者研讨会论文摘要集[C];2009年
9 张硕;于永光;王莎;;带有时滞和随机扰动的分数阶混沌系统同步[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
10 李西成;;一个具有糊状区的分数阶可动边界问题的相似解研究[A];中国力学大会——2013论文摘要集[C];2013年
相关博士学位论文 前10条
1 陈善镇;两类空间分数阶偏微分方程模型有限差分逼近的若干研究[D];山东大学;2015年
2 任永强;油藏与二氧化碳埋存问题的数值模拟与不确定性量化分析以及分数阶微分方程的数值方法[D];山东大学;2015年
3 蒋敏;分数阶微分方程理论分析与应用问题的研究[D];电子科技大学;2015年
4 卜红霞;基于分数阶傅里叶域稀疏表征的CS-SAR成像理论与算法研究[D];北京理工大学;2015年
5 杨变霞;分数阶Laplace算子的谱理论及其在微分方程中的应用[D];兰州大学;2015年
6 邵晶;几类微分系统的定性理论及其应用[D];曲阜师范大学;2015年
7 方益;分数阶Yamabe问题的一些紧性结果[D];中国科学技术大学;2015年
8 王国涛;几类分数阶非线性微分方程解的存在理论及应用[D];西安电子科技大学;2014年
9 陈明华;分数阶微分方程的高阶算法及理论分析[D];兰州大学;2015年
10 孟伟;基于分数阶拓展算子的灰色预测模型[D];南京航空航天大学;2015年
相关硕士学位论文 前10条
1 楚彩虹;单载波分数阶傅里叶域均衡系统及关键技术研究[D];郑州大学;2015年
2 张欣欣;Caputo型分数阶神经网络的稳定性分析[D];燕山大学;2015年
3 杨晶;带分数阶边界条件的分数阶微分方程边值问题[D];天津财经大学;2015年
4 王琳莉;分数阶Hamilton系统的运动方程和对称性理论研究[D];浙江理工大学;2016年
5 陈秀凯;基于移位Jacobi多项式求解三类变分数阶非线性微积分方程[D];燕山大学;2015年
6 纪翠翠;时间分数阶偏微分方程高阶数值解法[D];东南大学;2015年
7 董菁菁;分数阶长短波方程的长时间行为[D];鲁东大学;2016年
8 崔晓玉;几类分数阶扩散方程中线性方程组的预处理迭代解法[D];华东师范大学;2016年
9 吴亚运;几类分数阶微分方程解的存在性研究[D];安徽大学;2016年
10 曹玉童;两类分数阶差分方程解对初值的连续依赖性[D];安徽大学;2016年
,本文编号:1842327
本文链接:https://www.wllwen.com/kejilunwen/yysx/1842327.html