2-连通图的修正的彩虹顶点连通数
发布时间:2018-05-11 06:34
本文选题:修正的彩虹顶点连通数 + 彩虹顶点着色 ; 参考:《陕西师范大学学报(自然科学版)》2017年06期
【摘要】:路P称为修正的顶点彩虹路,如果P中所有的顶点着不同的颜色或者除端点外其余顶点着不同于端点的颜色。图G称为是修正的彩虹顶点连通的,如果对于G的任意两个顶点u和v,G都有一条修正的彩虹顶点u-v路。使图G是修正的彩虹顶点连通图的最小颜色数目k称为图G的修正的彩虹连通数,记做rvc*(G)。给出了2-连通图G的修正的彩虹顶点连通数的一个上界,即rvc*(G)≤|n/2|+1。
[Abstract]:Path P is called the modified Vertex Rainbow Road if all vertices in P have different colors or the vertices are different from the endpoint except the endpoint. A graph G is called a modified rainbow vertex connected if for any two vertices u and VG of G there is a modified rainbow vertex u-v path. Let G be the minimum number of colors of a modified rainbow vertex connected graph k is the modified rainbow connectivity number of graph G. In this paper, we give an upper bound of the connected number of the modified rainbow vertices of a 2-connected graph G, that is, rvcn (G) 鈮,
本文编号:1872821
本文链接:https://www.wllwen.com/kejilunwen/yysx/1872821.html