W-B-K方程的多辛Preissmann格式
发布时间:2018-05-12 02:01
本文选题:Hamilton系统 + Preissmann格式 ; 参考:《兰州理工大学学报》2017年01期
【摘要】:引入正则动量,验证了W-B-K方程具有Hamilton系统多辛格式,并证实此格式具有多辛守恒律、局部能量守恒律和动量守恒律.基于Hamilton空间体系的多辛理论研究了W-B-K方程的数值解法,利用中心Preissmann方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.
[Abstract]:By introducing regular momentum, it is proved that the W-B-K equation has multiple symplectic schemes for Hamilton systems, and that the schemes have multi-symplectic conservation laws, local energy conservation laws and momentum conservation laws. Based on the multi-symplectic theory of Hamilton space system, the numerical solution of W-B-K equation is studied. The method of constructing discrete multi-symplectic scheme by using the central Preissmann method is presented. A typical semi-implicit multi-symplectic scheme is constructed, which satisfies the multi-symplectic conservation law. Numerical results show that the multi-symplectic discrete scheme has good numerical stability for a long time.
【作者单位】: 普洱学院数学系;
【基金】:云南省教育厅基金(2015y490)
【分类号】:O241.82
【相似文献】
相关期刊论文 前3条
1 杨国录;四点时空偏心Preissmann格式的应用问题[J];泥沙研究;1991年04期
2 王俊杰;王连堂;;一类二阶KdV类型水波方程的多辛Preissmann格式[J];应用数学学报;2014年03期
3 ;[J];;年期
,本文编号:1876606
本文链接:https://www.wllwen.com/kejilunwen/yysx/1876606.html