中国服务型制造业全要素生产率评价与影响因素研究
发布时间:2018-05-12 02:39
本文选题:服务型制造 + 全要素生产率 ; 参考:《山东科技大学》2017年硕士论文
【摘要】:伴随着以顾客为核心、注重服务质量的互联网经济和技术经济时代的到来,个性化和定制化的客户需求不断涌现,服务型制造作为一种全新的生产模式引起了理论研究者和政策制定者的广泛关注。服务型制造通过客户全程参与,制造价值链中的企业相互提供生产性服务和服务性生产,打破了制造业与服务业的界限,实现了分散化制造资源的整合和产品与服务的有效融合。立足我国实际,关注服务型制造业全要素生产率的具体状况,探讨不同细分行业、时期和地区间的变动趋势并给出影响因素,对制定有关制造业发展战略规划和实施方案具有重要的意义。本文基于服务型制造理论、全要素生产率理论,运用我国服务型制造业分行业和地区的面板数据,测算了服务型制造业的全要素生产率,对其异质性、收敛性和影响因素进行了实证研究,并据此给出了推进服务型制造业科学发展,实现“中国制造”向“中国创造”转型升级的对策建议。首先,基于面板数据对服务型制造业全要素生产率的异质性进行了实证研究。通过构建非参数Malmquist指数,从时期、产业和地区三个方面测度了全要素生产率的时空差异,并对其变动趋势和变动原因进行分析。研究发现:2006-2014年间,我国服务型制造业总体TFP年均提升0.9%,主要源于技术进步率的提升,且总体波动比较明显。各细分产业TFP指数的总体变动趋势类似,交通运输设备制造业增长最快。除北京和河北因产业调整较大,服务型制造业全要素生产率为下降以外,其他各省市均呈正向增长,尤以辽宁省的增长最显著;中、西部地区的TFP增长要强于东部地区,并主要体现在技术进步率的变动上,中西部地区的技术追赶效果较为明显,地区差异逐渐缩小。其次,运用σ趋同和β趋同检验,从时期、产业和地区三个角度对服务型制造业TFP的变化趋势进行趋同性检验发现,2006-2014年间我国服务型制造业的TFP指数、技术效率指数呈绝对β收敛趋势,但技术进步指数具有绝对β发散性;细分产业间的绝对β收敛性明显;服务型制造业在区域上具有明显的俱乐部趋同性,东、中、西部地区内部的绝对β收敛速度均明显高于总体水平细分产业存在绝对β趋同,同时形成了东、中、西部三大趋同俱乐部。再次,利用SPSS软件和Eviews软件,建立动态面板数据回归模型,分析了影响服务型制造业全要素生产率提高的因素,发现人力资本水平、研发投入、政府支持、市场化程度、对外开放度等是形成服务型制造业全要素生产率行业差异的主要原因,但各因素的影响力度并不相同。最后,基于本研究的结论,从政府政策、行业和企业发展三个方面进行了分析,提出了推动服务型制造业专业化、精细化、服务化发展的对策建议。
[Abstract]:With the arrival of the era of Internet economy and technological economy, which takes the customer as the core and pays attention to the service quality, the individualized and customized customer needs emerge constantly. As a new mode of production, service-oriented manufacturing has attracted the attention of theoretical researchers and policy makers. Service-oriented manufacturing breaks the boundary between manufacturing and service industries by participating in the whole process, and enterprises in the manufacturing value chain provide each other with productive services and service-oriented production. The integration of decentralized manufacturing resources and the effective integration of products and services are realized. Based on the reality of our country, this paper focuses on the specific situation of total factor productivity of service manufacturing industry, discusses the changing trend of different subdivision industries, periods and regions, and gives the influencing factors. It is of great significance to formulate the strategic planning and implementation plan of manufacturing industry. Based on the service manufacturing theory and the total factor productivity theory, this paper calculates the total factor productivity of the service manufacturing industry by using the panel data of the service manufacturing industry in different industries and regions, and analyzes the heterogeneity of the total factor productivity of the service manufacturing industry. Based on the empirical study of convergence and influencing factors, the countermeasures and suggestions to promote the scientific development of service-oriented manufacturing industry and to realize the transformation and upgrading from "made in China" to "created in China" are put forward. Firstly, based on panel data, the heterogeneity of total factor productivity (TFP) in service manufacturing industry is studied empirically. By constructing the nonparametric Malmquist index, this paper measures the temporal and spatial differences of total factor productivity from three aspects: period, industry and region, and analyzes its changing trend and reasons. It is found that the average annual TFP increase of service manufacturing industry in China from 2006 to 2014 is 0.9%, which is mainly due to the improvement of technological progress rate, and the overall fluctuation is obvious. The overall change trend of the TFP index of each subdivision industry is similar, the transportation equipment manufacturing industry grows fastest. With the exception of Beijing and Hebei, where the total factor productivity of the service-oriented manufacturing industry is declining due to industrial adjustment, all other provinces and cities have a positive growth trend, especially in Liaoning Province. In the west, the growth of TFP is stronger than that in the eastern region. And mainly reflected in the change of technological progress rate, the technology catch-up effect in the central and western regions is obvious, and the regional differences are gradually narrowing. Secondly, by using 蟽 -convergence and 尾 -convergence test, this paper analyzes the trend of TFP change in service-oriented manufacturing industry from three angles of period, industry and region, and finds out the TFP index of service-oriented manufacturing industry in China from 2006 to 2014. The technical efficiency index has the trend of absolute 尾 convergence, but the technological progress index has absolute 尾 divergence; the absolute 尾 convergence among the subdivision industries is obvious; the service manufacturing industry has obvious club convergence in the region. The convergence rate of absolute 尾 in the western region is obviously higher than that in the overall horizontal subdivision industry, and at the same time, the three major convergence clubs of east, middle and west are formed. Thirdly, using SPSS software and Eviews software, establish dynamic panel data regression model, analyze the factors that affect the total factor productivity of service-oriented manufacturing industry, find out the level of human capital, R & D investment, government support, marketization degree. The degree of opening to the outside world is the main reason for the difference of the total factor productivity of the service manufacturing industry, but the influence of each factor is not the same. Finally, based on the conclusion of this study, this paper analyzes the three aspects of government policy, industry and enterprise development, and puts forward some countermeasures and suggestions to promote the specialization, refinement and service development of service-oriented manufacturing industry.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F224;F424
【参考文献】
相关期刊论文 前10条
1 肖挺;;我国省份间服务业全要素生产率的检验分析[J];云南财经大学学报;2017年02期
2 李占风;刘晓歌;;中国生产性服务业TFP的时空差异与影响因素分析[J];统计与信息论坛;2016年12期
3 陈菁泉;刘伟;杜重华;;环境规制下全要素生产率逆转拐点的空间效应——基于省际工业面板数据的验证[J];经济理论与经济管理;2016年05期
4 王恕立;汪思齐;滕泽伟;;环境约束下的中国服务业全要素生产率增长[J];财经研究;2016年05期
5 杜江;王锐;王新华;;环境全要素生产率与农业增长:基于DEA-GML指数与面板Tobit模型的两阶段分析[J];中国农村经济;2016年03期
6 肖挺;;我国服务业分地区及分行业生产率动态变化及收敛性分析[J];软科学;2016年03期
7 陈超凡;;中国工业绿色全要素生产率及其影响因素——基于ML生产率指数及动态面板模型的实证研究[J];统计研究;2016年03期
8 王恕立;滕泽伟;刘军;;中国服务业生产率变动的差异分析——基于区域及行业视角[J];经济研究;2015年08期
9 李靖华;马丽亚;黄秋波;;我国制造企业“服务化困境”的实证分析[J];科学学与科学技术管理;2015年06期
10 杜江;;中国农业全要素生产率增长及其时空分异[J];科研管理;2015年05期
,本文编号:1876777
本文链接:https://www.wllwen.com/kejilunwen/yysx/1876777.html