当前位置:主页 > 科技论文 > 数学论文 >

利用奇异值分解的二阶递归系统数值稳定性方法

发布时间:2018-05-24 02:42

  本文选题:Krawtchouk多项式 + Jacobsthal数列 ; 参考:《华侨大学学报(自然科学版)》2017年06期


【摘要】:为了简便地解决二阶递归系统的稳定性问题,将二阶递归系统转变为二阶离散时变线性系统,并讨论递归系统的稳定性.在二阶离散线性时变系统稳定性分析的基础上,利用奇异值分解(SVD),将其转化为参考信号(RS)系统.提出一个新的离散时变线性系统不稳定性的充分条件,并以离散正交Krawtchouk多项式与Jacobsthal数列递归式为主,讨论并推导出其在Ⅱ,Ⅳ象限上的变化情况和新的不稳定性判据.仿真结果验证了结论的准确性.
[Abstract]:In order to solve the stability problem of second-order recursive systems, the second-order recursive systems are transformed into second-order discrete time-varying linear systems, and the stability of recursive systems is discussed. Based on the stability analysis of the second order discrete linear time-varying system, the singular value decomposition (SVD) is used to transform it into a reference signal (RS) system. A new sufficient condition for the instability of discrete time-varying linear systems is proposed. Based on the discrete orthogonal Krawtchouk polynomials and Jacobsthal sequence recursion, the variation of the discrete orthogonal Krawtchouk polynomials and the new criteria of instability in the 鈪,

本文编号:1927371

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1927371.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f59e9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com