当前位置:主页 > 科技论文 > 数学论文 >

一类具有饱和传染率的时滞传染病模型的全局稳定性

发布时间:2018-06-09 15:36

  本文选题:传染率 + 基本再生数 ; 参考:《兰州大学学报(自然科学版)》2017年05期


【摘要】:研究了一类具有非线性饱和传染率和时滞效应的SEIR传染病模型,给出了用于判断疾病是否持续流行的基本再生数R_0.利用Lyapunov方法和LaSalle不变原理证明了当R_0≤1时,无病平衡点全局渐近稳定;当R_01时,疾病平衡点全局稳定.
[Abstract]:In this paper, a class of SEIR infectious disease models with nonlinear saturation infection rate and time-delay effect is studied, and the basic regenerative number RW _ 0 is given to judge whether the disease is persistent or not. By using Lyapunov method and LaSalle invariant principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R _ (0) 鈮,

本文编号:2000241

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2000241.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a0c4f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com