一类具有脉冲作用与饱和治愈率的SIRS模型的分析
发布时间:2018-06-21 09:52
本文选题:SIRS传染病模型 + 出生脉冲 ; 参考:《西南师范大学学报(自然科学版)》2017年09期
【摘要】:研究了一类具有出生脉冲,脉冲接种和饱和治愈率的SIRS传染病模型.首先研究了无病周期解和非平凡周期解的存在性和稳定性,得到了分支存在的条件,其次得到了一个Poincaré映射,运用Poincaré映射和中心流形定理讨论染病周期解的Flip分支.
[Abstract]:A Sirs infectious disease model with birth pulse, pulse vaccination and saturated cure rate was studied. Firstly, the existence and stability of disease-free periodic solutions and nontrivial periodic solutions are studied, and the conditions for the existence of bifurcation are obtained. Then, a Poincar 茅 map is obtained. The Flip bifurcation of infected periodic solutions is discussed by using Poincar 茅 mapping and central manifold theorem.
【作者单位】: 山西师范大学数学与计算机科学学院;
【基金】:山西省自然科学基金项目(2013011002-2)
【分类号】:O175
,
本文编号:2048179
本文链接:https://www.wllwen.com/kejilunwen/yysx/2048179.html