协变量个数趋于无穷的对数线性Poisson模型的渐近性质
发布时间:2018-06-27 15:13
本文选题:高维数据 + 对数线性模型 ; 参考:《广西大学》2015年硕士论文
【摘要】:1986年Liang和Zeger从广义线性模型推广(GLM)而得到广义估计方程(Generalized estimating equations, GEE), GEE是对纵向数据进行回归分析的一类重要方法,其主要特点是引入了工作相关(working correlation)矩阵.自推广以来,广义估计方程在理论和应用得到了很大的发展.在传统的回归模型分析中,一般是假定“样本量n→∞,而协变量个数p固定”的情形.随着高维数据的出现,“当样本量n→∞,协变量个数pn→∞”这一情形也逐渐受到统计学家的关注.本文的主要研究工作是,基于广义估计方程方法研究协变量个数pn趋于无穷的对数线性Poisson分布模型的渐近性质.在Pn3/n→0(n→+∞)等正则条件下,证明GEE估计的存在性,相合性和渐近正态性.推广Xie和Yang (Ann.Statist.31(2003)310-347), Balan和Schiopu-Kratina (Ann.Statist.33(2005)522-541)的渐近结果到协变量是高维情形,也推广了Wang的结果(Ann. Statist.39(2011)389-417)到响应变量是无界的情况.
[Abstract]:In 1986, Liang and Zeger obtained generalized estimating equations from generalized linear model (GLM). Gee is an important method for regression analysis of longitudinal data. The main characteristic of Liang and Zeger is the introduction of work-related (working correlation) matrix. Since its extension, the generalized estimation equation has been greatly developed in theory and application. In the traditional regression model analysis, it is generally assumed that "sample size n 鈭,
本文编号:2074337
本文链接:https://www.wllwen.com/kejilunwen/yysx/2074337.html