关于L-函数与k次高斯和的加权均值
本文选题:Dirichlet + L-函数 ; 参考:《陕西师范大学学报(自然科学版)》2017年04期
【摘要】:利用解析方法,特征的正交性以及经典高斯和的性质研究Dirichlet L-函数与k次高斯和的加权均值问题,并给出一个较强的渐近公式。
[Abstract]:By using the analytic method, the orthogonality of the characteristic and the properties of the classical Gao Si sum, the weighted mean value problem of the Dirichlet L- function and the k-degree Gao Si sum is studied, and a strong asymptotic formula is given.
【作者单位】: 西安外国语大学经济金融学院;
【基金】:国家自然科学基金(11371291) 陕西省软科学项目(2016KRM076)
【分类号】:O156.4
【参考文献】
相关期刊论文 前1条
1 张文鹏;;关于模p的一类同余方程解的个数[J];西北大学学报(自然科学版);2016年03期
【共引文献】
相关期刊论文 前2条
1 刘艳艳;张文鹏;;三次高斯和与二项指数和混合均值的线性递推公式[J];陕西师范大学学报(自然科学版);2017年04期
2 王枭涵;王娟娟;;关于L-函数与k次高斯和的加权均值[J];陕西师范大学学报(自然科学版);2017年04期
【相似文献】
相关期刊论文 前10条
1 张文鹏,易媛;广义二次高斯和的一个恒等式及其应用[J];咸阳师范专科学校学报;2000年03期
2 姚维利,孟冬琴;二次高斯和的计算公式[J];延安大学学报(自然科学版);2002年02期
3 夏伶莉;陈冬;杨晶;;一类高斯和显式公式的直接求法[J];数学进展;2014年02期
4 夏伶莉;杨晶;;一类阶为偶数的高斯和显式计算的注记[J];数学的实践与认识;2012年12期
5 姚维利;广义二次高斯和及它的四次均值公式[J];纺织高校基础科学学报;2002年02期
6 张文鹏;关于广义二次高斯和的四次均值公式[J];纺织高校基础科学学报;2000年02期
7 董忠民;关于三次高斯和及其四次均值[J];纺织高校基础科学学报;2002年03期
8 杨明顺;任治斌;;二次高斯和均值公式[J];江西科学;2007年04期
9 罗英勇;;模p~l(l≥2)上的二次高斯和(英文)[J];数学研究;2010年03期
10 裴晓雯,吴茂全;在f=p~3情形下高斯和的计算[J];沈阳化工学院学报;2002年04期
相关博士学位论文 前1条
1 杨晶;指数4情形下高斯和的决定[D];清华大学;2006年
相关硕士学位论文 前3条
1 罗世新;指数4的高斯和[D];清华大学;2004年
2 罗英勇;关于高斯和(mod p~l)l≥2[D];河南大学;2007年
3 李磊;模为算术级数中素数的三次高斯和的分布[D];解放军信息工程大学;2004年
,本文编号:2092494
本文链接:https://www.wllwen.com/kejilunwen/yysx/2092494.html