广义H-矩阵一些新的判定
[Abstract]:H-matrix is widely used in economics, statistics, engineering technology and so on. As a generalized form of H-matrix under positive definite condition, the numerical solution of 2-D or 3-D Euler equation in hydrodynamic calculation of generalized H-matrix is obtained. The neutralization of the invariant torus of the dynamical system and the matrix analysis have important theoretical and practical significance. In this paper, we apply the relation between generalized eigenvalue and generalized Rayleigh quotient, and the relation between generalized M- matrix and M- matrix, combining with the corresponding matrix block and the estimation of spectral radius of submatrix, etc. Some judgment theorems of generalized H-matrix are obtained, and some recent results are improved. The first chapter mainly introduces the theoretical background, application background and research status of generalized H-matrix, and gives the symbol description, definition, Lemma and so on. In chapter 2, the relation between generalized M- matrix and M- matrix, the spectral radius of submatrix, the relationship between generalized eigenvalue and generalized Rayleigh quotient, and the techniques of matrix partitioning and inequality scaling are used. Some simple judgment theorems of generalized H-matrix are obtained, and corresponding numerical examples are given to illustrate the validity of the decision. In chapter 3, on the basis of the second chapter, we select the positive diagonal matrix D in a progressive way so that AD is a diagonally dominant matrix strictly in partial order, and give some progressive judgment methods of generalized H-matrix. These methods provide a theoretical basis for some generalized H-matrix iterative discriminant algorithms proposed in Chapter 4. In chapter 4, on the basis of the theory in chapter 3, the corresponding iterative matrix is constructed, and some iterative discriminant algorithms of generalized H-matrix are given, and the convergence of each algorithm is proved theoretically. Finally, we use appropriate numerical examples to illustrate the effectiveness of the algorithm.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O151.21
【参考文献】
相关期刊论文 前10条
1 崔静静;陆全;徐仲;安晓虹;;广义H-矩阵的一组判定条件[J];应用数学;2016年02期
2 刘建州;吕振华;李林;楚珊;;一组非奇异H-矩阵的实用判据[J];湖南文理学院学报(自然科学版);2015年02期
3 郭爱丽;刘建州;;广义Nekrasov矩阵的充分条件[J];数学的实践与认识;2013年03期
4 王洁;刘建州;黄泽军;;非奇异H矩阵的一类新递进判别法[J];工程数学学报;2012年03期
5 郭爱丽;刘建州;;广义Nekrasov矩阵的判定[J];工程数学学报;2009年04期
6 朱砾;卿科;;广义H-矩阵的乘积的性质[J];高等学校计算数学学报;2009年01期
7 黄泽军;刘建州;;非奇异H矩阵的一类新迭代判别法[J];工程数学学报;2008年05期
8 朱砾;刘建州;;Some new conditions for generalized H-matrices[J];Applied Mathematics and Mechanics(English Edition);2007年11期
9 徐映红,刘建州;广义严格对角占优矩阵的一组判定条件[J];工程数学学报;2005年04期
10 刘建州,徐映红,廖安平;广义块对角占优矩阵的判定[J];高等学校计算数学学报;2005年03期
相关博士学位论文 前2条
1 申淑谦;特殊矩阵数值分析和鞍点问题迭代求解预处理技术[D];电子科技大学;2008年
2 朱砾;块对角占优矩阵的性质与判定及其应用[D];湘潭大学;2007年
相关硕士学位论文 前2条
1 匡巧英;H-矩阵和广义H-矩阵的一些判别方法[D];湘潭大学;2013年
2 冉水秀;块H-矩阵与广义H-矩阵性质的研究[D];湘潭大学;2012年
,本文编号:2123599
本文链接:https://www.wllwen.com/kejilunwen/yysx/2123599.html