几类特殊Corona图的b-染色数与b-连续性研究
发布时间:2018-07-17 16:00
【摘要】:在一个图G的正常k染色中,如果每一个颜色类中都至少存在一个顶点,使得其在其它的k-1个颜色类中都至少有一个邻居,则称这样的正常k染色为b-染色.一个图G的b-染色数是最大的正整数k,使得用k种颜色能够对G进行b-染色,用b(G)来表示.如果对于任意的正整数k:χ(G)≤k≤b(G),用k种颜色可以对图G进行b-染色,则称图G是b-连续的.设G1与G2为任意图,称图G=G_1·G_2为图G_1与G_2的Corona图,其中G包含G_1的一个拷贝,包含G_2的|V(G_1)|个拷贝,且G_1的第i个顶点与G_2的第i个拷贝的所有顶点都邻接.研究了路图与路图、星形图以及轮图所构成的Corona图P_n·P_m、P_n·K_(1,m)以及P_n·W_(m+1)的m-度,b-染色数与b-连续性.
[Abstract]:In the normal k-coloring of a graph G, if there is at least one vertex in each color class such that it has at least one neighbor among the other k-1 color classes, then such normal k-coloring is called b-coloring. The b-coloring number of a graph G is the largest positive integer k, so that the k-color can be used to b-coloring G, which is represented by b (G). If for any positive integer k: 蠂 (G) 鈮,
本文编号:2130179
[Abstract]:In the normal k-coloring of a graph G, if there is at least one vertex in each color class such that it has at least one neighbor among the other k-1 color classes, then such normal k-coloring is called b-coloring. The b-coloring number of a graph G is the largest positive integer k, so that the k-color can be used to b-coloring G, which is represented by b (G). If for any positive integer k: 蠂 (G) 鈮,
本文编号:2130179
本文链接:https://www.wllwen.com/kejilunwen/yysx/2130179.html