几类非线性动力系统的Hopf分岔研究
[Abstract]:Hopf bifurcation is a kind of important dynamic bifurcation, and Hopf bifurcation control is a challenging topic. This paper studies the Hopf bifurcation and related analysis and control problems of several nonlinear dynamical systems, and then enriches and improves the theoretical results of the bifurcation, discusses the dynamic behavior of the system's balance point, and gives the Hopf score of the system. The characteristic of the bifurcation is analyzed. The bifurcation controller is produced and the bifurcation controller is designed. The control method is proposed to make the system produce the desired dynamic behavior. The control of the amplitude of the Hopf bifurcation limit loop is studied. The amplitude control relation is given. The amplitude is predicted more accurately, and the system's Hopf bifurcation delay control and stability control are realized. Several control strategies are designed. Each control method has its own characteristics and can reach the desired control goal. Several typical nonlinear dynamic systems are selected as examples. Firstly, the research status of nonlinear control theory, bifurcation control, Hopf bifurcation control and chaos control are summarized. The nonlinear dynamics are introduced. Some basic concepts and classifications of Hopf bifurcation of force system are given, the Hopf bifurcation theorem and several bifurcation control methods are given, and several commonly used stability theories and dynamic system theories are introduced to prepare the study of this paper. The limit cycle amplitude table of the generalized Van der Pol type strong nonlinear vibration system is obtained by an improved multiscale method. A number of linear and nonlinear feedback controllers are constructed and the approximate analytic relationship between the feedback coefficient and the amplitude of the limit cycle is obtained. By selecting appropriate feedback coefficients, the amplitude of the limit cycle can be controlled and the control effect of the different controllers is discussed and compared. The results of the numerical simulation verify the correctness and control of the amplitude prediction. The effectiveness of the system and the larger parameters still have high accuracy. The bifurcation and control of a class of chaotic Van der Pol-Duffing systems with multiple unknown parameters are discussed. The stability of the equilibrium point is analyzed by using the Routh-Hurwitz criterion and the critical value of the parameter of the Hopf bifurcation is obtained. The central manifold theorem and the standard type theory are used. The stability index of the bifurcation solution. Without changing the stability of the bifurcation solution, the Washout filter linear controller is designed to change the bifurcation value. Without changing the bifurcation value, the Washout filter nonlinear controller is designed to control the limit cycle amplitude of the system. The limit cycle amplitude obtained by the central manifold and the canonical theory is used. The approximate analytical relationship between the control gain and the control gain has high accuracy and reliable prediction. The results of the numerical simulation verify the correctness of the theoretical analysis, the effectiveness of the control and the reliability of the amplitude prediction. The chaotic attractor in a new chaotic system has been shown by the maximum Li Yap Andrianof exponent of the numerical simulation. The characteristic equation gives the condition of the Hopf bifurcation of the system. By the detailed calculation, the first Lyapunov coefficient of the system is obtained, and the stability of the bifurcation solution is analyzed. The results show that the two equilibrium points of the new chaotic system can have a non degenerate supercritical Hopf bifurcation, so that the bifurcation can be bifurcated at the equilibrium point. The results of the numerical simulation are in agreement with the theoretical derivation. The nonlinear dynamic properties of the equilibrium point of the L u system are discussed. The stability of the equilibrium point is analyzed by the Routh-Hurwitz criterion and the critical value of the parameter of the Hopf bifurcation is obtained. The nonlinear controller realizes the delay control and stability control of the Hopf bifurcation theoretically. The results of the numerical simulation further verify the correctness and feasibility of the theoretical analysis. The Hopf bifurcation control of an improved hyperchaotic L u system is studied. A hybrid control strategy of state feedback joint parameter control is proposed, and the control strategy is proposed. It not only keeps the balance point structure of the original system, but also does not increase the dimension of the original system. By selecting the appropriate control parameters, the delay control of the Hopf bifurcation is realized. Through the standard theory, the stability index of the bifurcation solution is further obtained. Finally, two sets of parameters are given for numerical simulation, and the control strategy is verified. The bifurcation control of the high dimensional nonlinear system is more complex than the low dimensional system, and the method proposed in this paper is simple and effective. Therefore, this method is very meaningful for the bifurcation control of a high dimensional nonlinear system.
【学位授予单位】:湖南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O19
【相似文献】
相关期刊论文 前10条
1 刘俊,汪帆;一类非线性动力系统的定性分析(英文)[J];黑龙江大学自然科学学报;2003年03期
2 郑惠萍;非线性动力系统分岔混沌实验演示装置的开发[J];河北工业科技;2005年05期
3 凌代俭;唐炳全;;一类非线性动力系统的分叉分析与仿真[J];计算机仿真;2006年06期
4 李静;杨朝欣;何斌;;4维一般非线性动力系统规范形的计算[J];北京工业大学学报;2009年08期
5 张伟;非线性动力系统的规范形和余维3退化分叉[J];力学学报;1993年05期
6 徐思林;关于非线性动力系统解的渐近性[J];西北建筑工程学院学报;1996年03期
7 张伟年;非线性动力系统实验[J];自然杂志;1997年05期
8 张家忠,许庆余,郑铁生;具有局部非线性动力系统周期解及稳定性方法[J];力学学报;1998年05期
9 张家忠,华军,许庆余;非线性动力系统中两鞍-结分岔点间非稳定曲线的确定[J];应用数学和力学;1999年12期
10 吴志强,陈予恕;含约束非线性动力系统的分岔分类[J];应用数学和力学;2002年05期
相关会议论文 前10条
1 李静;杨朝欣;张伟;何斌;;一般四维非线性动力系统规范形的计算[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
2 陈淑萍;张伟;钱有华;;四维非线性动力系统的Bogdanov-Takens规范形的计算[A];现代数学和力学(MMM-XI):第十一届全国现代数学和力学学术会议论文集[C];2009年
3 李静;杨召丽;张伟;;三维非线性动力系统唯一规范形的一般形式[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
4 金俐;陆启韶;;非光滑非线性动力系统的稳定性分析[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
5 李静;杨朝欣;张伟;何斌;;四维一般非线性动力系统五阶规范形的计算[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
6 孔庆凯;贺昌政;;关于一类特殊非线性动力系统稳定性的探讨[A];Systems Engineering, Systems Science and Complexity Research--Proceeding of 11th Annual Conference of Systems Engineering Society of China[C];2000年
7 李文成;邓子辰;;高振荡非线性动力系统的李群积分算法研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
8 刘滨滨;李旭;张正娣;;多尺度下非线性动力系统的振荡及其分岔机制[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
9 刘玉涛;何斌;李静;;参数变换下的一类高维非线性动力系统的最简规范形的研究与计算[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
10 宋学锋;;混沌经济系统的定量特征及其计算方法[A];复杂巨系统理论·方法·应用——中国系统工程学会第八届学术年会论文集[C];1994年
相关博士学位论文 前10条
1 蔡萍;几类非线性动力系统的Hopf分岔研究[D];湖南大学;2015年
2 钱长照;非线性动力系统的时滞反馈分岔控制研究[D];湖南大学;2005年
3 符文彬;非线性动力系统的分岔控制研究[D];湖南大学;2004年
4 朱禧;微生物发酵非线性动力系统全局行为及稳定性分析[D];大连理工大学;2014年
5 丁玉梅;非线性动力系统规范形理论及应用问题研究[D];天津大学;2009年
6 王磊;微生物发酵中的多阶段非线性动力系统及随机噪声的影响[D];大连理工大学;2009年
7 周艳;非线性动力系统双Hopf分叉及在工程中的应用[D];北京工业大学;2013年
8 沈邦玉;批式流加与连续发酵的非光滑动力系统辨识与优化控制[D];大连理工大学;2012年
9 李佼瑞;两类随机非线性动力系统和经济应用的研究[D];西北工业大学;2006年
10 徐润章;非线性动力系统若干理论问题研究[D];哈尔滨工程大学;2008年
相关硕士学位论文 前10条
1 兰天柱;几类非线性动力系统的动力学行为研究[D];杭州师范大学;2016年
2 李鹏柱;关于神经网络与样条函数的逼近性能研究[D];宁夏大学;2016年
3 苏涛;甘油生物歧化生产1,3-丙二醇的混杂非线性动力系统辨识[D];大连理工大学;2010年
4 谢雯;非线性动力系统的分岔与控制[D];南京航空航天大学;2010年
5 王俊霞;非线性动力系统的混沌同步研究[D];江苏大学;2005年
6 陈彩霞;非线性动力系统的混沌同步及其在网络系统的应用[D];江苏大学;2006年
7 李耀伟;非线性动力系统的稳定性分析及其分岔控制[D];兰州交通大学;2014年
8 孙中奎;同伦理论在非线性动力系统中的应用研究[D];西北工业大学;2005年
9 于晋臣;非线性动力系统的分岔研究[D];北京交通大学;2007年
10 孙慧静;非线性动力系统分岔、混沌理论及其应用[D];北京交通大学;2006年
,本文编号:2148000
本文链接:https://www.wllwen.com/kejilunwen/yysx/2148000.html