辐射输运与电子能量强耦合源项的一种高效计算方法
发布时间:2018-07-28 11:52
【摘要】:本文研究辐射输运和电子能量耦合方程组的数值方法.在具有光性厚特征的应用问题中,这两类方程的耦合源项表现出强刚性,使得设计稳健高效的数值格式陷入困难.针对辐射输运多群模型和电子能量的耦合方程组的刚性源项,我们给出一种基于电子温度变化规律拟设(ansatz)的积分算法,其时间步长不受刚性源项限制,从而使得计算效率比传统显式方法或隐式非线性迭代获得本质的提高.在所基于的拟设有效时,算法确保给出具有物理意义的解,数值算例显示其给出的解具有较高的精确度.
[Abstract]:In this paper, the numerical method of radiation transport and electron energy coupling equations is studied. The coupled source terms of these two kinds of equations exhibit strong rigidity in the applications with the characteristic of photonic thickness, which makes it difficult to design a robust and efficient numerical scheme. For the rigid source term of the radiation transport multi-group model and the coupled equations of electron energy, we present an integral algorithm for (ansatz) based on the law of electron temperature variation, whose time step is not limited by the rigid source term. Therefore, the computational efficiency is improved substantially compared with the traditional explicit method or implicit nonlinear iteration. When the proposed solution is valid, the solution with physical meaning is guaranteed, and the numerical example shows that the solution given by the algorithm has a high accuracy.
【作者单位】: 北京大学数学科学学院科学与工程计算系;北京应用物理与计算数学研究所计算物理重点实验室;
【基金】:国家自然科学基金(11401033,91330205) 计算物理重点实验室基金资助项目
【分类号】:O241.8
本文编号:2150050
[Abstract]:In this paper, the numerical method of radiation transport and electron energy coupling equations is studied. The coupled source terms of these two kinds of equations exhibit strong rigidity in the applications with the characteristic of photonic thickness, which makes it difficult to design a robust and efficient numerical scheme. For the rigid source term of the radiation transport multi-group model and the coupled equations of electron energy, we present an integral algorithm for (ansatz) based on the law of electron temperature variation, whose time step is not limited by the rigid source term. Therefore, the computational efficiency is improved substantially compared with the traditional explicit method or implicit nonlinear iteration. When the proposed solution is valid, the solution with physical meaning is guaranteed, and the numerical example shows that the solution given by the algorithm has a high accuracy.
【作者单位】: 北京大学数学科学学院科学与工程计算系;北京应用物理与计算数学研究所计算物理重点实验室;
【基金】:国家自然科学基金(11401033,91330205) 计算物理重点实验室基金资助项目
【分类号】:O241.8
【相似文献】
相关期刊论文 前7条
1 李功胜,陈贞波;一类非线性源项反演的存在性[J];淄博学院学报(自然科学与工程版);2002年02期
2 刘进庆;李功胜;;随机扰动条件下对流弥散方程源项系数反演的数值模拟[J];山东大学学报(工学版);2008年03期
3 袁利国;邱华;聂笃宪;;热传导(对流-扩散)方程源项识别的粒子群优化算法[J];数学的实践与认识;2009年14期
4 金忠青;陈夕庆;;用脉冲谱-优化法求解对流-扩散方程源项控制反问题[J];河海大学学报;1992年02期
5 李功胜,马逸尘;半线性热方程的源项反问题[J];数学物理学报;2001年02期
6 王兆清;綦甲帅;唐炳涛;;奇异源项问题的重心插值数值解[J];计算物理;2011年06期
7 ;[J];;年期
相关硕士学位论文 前1条
1 熊秧萍;具有源项和粘弹性项的波方程的一些研究[D];浙江师范大学;2012年
,本文编号:2150050
本文链接:https://www.wllwen.com/kejilunwen/yysx/2150050.html