关于Aluthge变换的相关结论
[Abstract]:Numerical range is one of the most popular topics in mathematics nowadays. Since the emergence of Toeplitz-Hausdorff theorem, the research on numerical range has become more and more active. The research on numerical range involves many branches of basic mathematics and applied mathematics, and has been widely used in these fields. Since 1990, Ariyadasa Aluthge has introduced Aluthge transform (?) After the introduction of Takeaki Yamazaki in 2001, the study on the properties of operators such as T, (?) (*) has also attracted the attention of most scholars. In this paper, these results are mainly summarized. The following is the main content of this paper: the first chapter is the introduction and related preparatory knowledge. In the second chapter, some conclusions of Aluthge transform and generalized Aluthge transform are given. Firstly, the definitions of (?), (?) (*) and (?) 位, (?) 位 (*) are introduced, and then some basic properties of W (T) W (?), and W (?) (*) are introduced, and the conclusion of W (?) W (?) (*) is summarized. In contrast, we also have the conclusion that (?) 位 and (?) 位 (*) are equal to each other. The third chapter summarizes the related conclusions about the spectral graph of Aluthge transform, first introduces the definition of spectral graph, then through some Lemma and theorem, finally concludes: in most cases, the spectral graph of T and (?) The spectral patterns are consistent with each other. In chapter 4, some conclusions about Aluthge transformation of complex symmetric operators are summarized. Firstly, the definitions of conjugate and complex symmetry are introduced. The five main conclusions of this chapter are summarized by some Lemma and theorems: (1) the Aluthge transformation of complex symmetric operators is still complex symmetric. (2) if T is a complex symmetric operator, then (?) * and (?) *) are unitary equivalent. (3) if T is a complex symmetric operator, Then T (?) T (?) T is normal. (4) 0 (?) T 2 0. (5) the operator satisfying T2G 0 must be a complex symmetric operator. In chapter 5, we summarize some conclusions about pole decomposition of Aluthge transform, and introduce the form of pole decomposition of Aluthge transform and some conclusions of bimormal operator.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O177
【相似文献】
相关期刊论文 前10条
1 王晓霞,贺祖国;向量值函数空间中J-对称算子的J-自伴延拓[J];系统科学与数学;2000年04期
2 魏广生;对称算子自伴域的一种新描述[J];内蒙古大学学报(自然科学版);1996年03期
3 朱国城;关于强对称和遗传对称算子性质的几点注记[J];科学通报;1986年02期
4 A.N.kochuber;何万生;;论正定对称算子的扩张[J];张掖师专学报(综合版);1988年01期
5 刘景麟;;关于J对称算子的J自伴延拓[J];内蒙古大学学报(自然科学版);1992年03期
6 王忠,傅守忠;向量值J-对称算子的J-自伴延拓[J];内蒙古工业大学学报(自然科学版);1999年01期
7 王晓欢;高宗升;;复对称算子的一些等价性质[J];数学的实践与认识;2010年08期
8 陈黎丽;一个(2+1)维的可积sinb-Gordon方程[J];宁波大学学报(理工版);1997年04期
9 胡昆明;;确定等价电子杨盘基的等概率比对方法[J];物理学报;2008年10期
10 丁文宇;;J-对称算子J-自伴扩张的谱[J];肇庆学院学报;2007年02期
相关博士学位论文 前1条
1 李春光;复对称算子及相关问题[D];吉林大学;2012年
相关硕士学位论文 前4条
1 孟玉;关于Aluthge变换的相关结论[D];吉林大学;2017年
2 樊萍;对称算子空间上初等映射的可加性[D];陕西师范大学;2011年
3 丁文宇;J-对称算子及其J-自伴扩张的谱[D];内蒙古工业大学;2007年
4 张国栋;Banach代数上对称算子空间的保不变量问题[D];黑龙江大学;2003年
,本文编号:2154950
本文链接:https://www.wllwen.com/kejilunwen/yysx/2154950.html