系统半变分不等式问题的适定性研究
[Abstract]:Semi-variational inequalities represent a class of nonlinear inclusion problems related to Clake subdifferential operators. In the framework of nonlinear analysis and non-smooth analysis theory, semi-variational inequalities have become a powerful mathematical model. It is widely used in mechanical problems such as unilateral contact, non-convex semi-permeation, multi-layer structure delamination and other engineering problems, such as stone engineering, nonlinear friction contact and so on. In view of the extensive application value of semi-variational inequalities in various practical problems, in the 1990s, scholars and experts in various fields at home and abroad paid close attention to the problems of semi-variational inequalities. A large number of papers and monographs related to the theory of semi-variational inequalities have been obtained. The concept of fitness plays an important role in the study of optimization problems, variational inequalities, equilibrium problems and their related problems. It has an important influence on the solvability, uniqueness, stability and algorithm research of the related problems. The semi-variational inequalities of systems and divisible semi-variational inequalities of systems are two important generalizations of variational inequalities and semi-variational inequalities. They have important application value in engineering, mechanics, economy and so on. In this paper, by introducing the concept of fitness for the corresponding inclusion problem, we study the fitness of the semi-variational inequality problem and the divisible semi-variational inequality problem of the system. At the same time, the metric properties of fitness and some equivalent results related to fitness are given. The main work of this paper is as follows: firstly, under the framework of nonlinear analysis theory, monotone operator theory and non-compactness theory, the concept of fitness for semi-variational inequality problems of systems is proposed by defining approximate sequences. Under certain assumptions, for a given set? With? And the relationship between the two sets is studied. Based on the set? With? In the second chapter, we describe the metric properties of the fitness of the semi-variational inequality problems. Since the semi-variational inequality problem of the system can be regarded as a class of inclusion problems involving Clake subdifferential operators, in Chapter 3, we define the fitness of the inclusion problem of the system. It is proved that the adequacy of the inclusion problem and the corresponding semi-variational inequality problem is equivalent to each other. Finally, in chapter 4, we study the divisible semi-variational inequality problem and its fitness. Furthermore, under different monotonicity assumptions, we obtain the equivalence results between the existence and uniqueness of strong and weak proper definiteness and solution for divisible semi-variational inequality problems.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O178
【相似文献】
相关期刊论文 前10条
1 张立平,韩继业,徐大川;变分不等式问题的解的存在性[J];中国科学(A辑);2000年10期
2 邢志栋,曾云辉,刘三阳;变分不等式问题的新发展[J];西安电子科技大学学报;2000年05期
3 张立平,赖炎连;关于单调的变分不等式问题的收敛性方法[J];应用数学学报;2000年02期
4 董云达;求解变分不等式问题的一个递推算法的一个注(英文)[J];数学杂志;2003年03期
5 屈彪,郑召文,张善美;利用广义D-间隙函数求解变分不等式问题的新进展[J];曲阜师范大学学报(自然科学版);2005年04期
6 孙洪春,孙敏,刘品;一种求解广义变分不等式问题的新方法[J];曲阜师范大学学报(自然科学版);2005年04期
7 李飞;梁惜明;;连续化方法求解变分不等式问题[J];系统科学与数学;2005年05期
8 余文波;;一种求解变分不等式问题的光滑路径方法[J];渤海大学学报(自然科学版);2006年04期
9 罗杰;陈乔;;不变松弛μ单调及其在似变分不等式问题中的应用[J];长江大学学报(自然科学版)理工卷;2008年04期
10 谭露琳;;空间中变分不等式问题解的存在性与例外簇[J];华南师范大学学报(自然科学版);2009年03期
相关会议论文 前2条
1 袁驷;刘泽洲;邢沁妍;;一维变分不等式问题的自适应有限元分析新探[A];第23届全国结构工程学术会议论文集(第Ⅰ册)[C];2014年
2 周岩;濮定国;;Large QP-free方法解变分不等式问题[A];中国运筹学会第七届学术交流会论文集(上卷)[C];2004年
相关博士学位论文 前6条
1 孙菊贺;锥约束变分不等式问题的数值方法的研究[D];大连理工大学;2008年
2 彭自嘉;双重非线性发展型方程及H-半变分不等式问题研究[D];中南大学;2012年
3 罗美菊;求解随机变分不等式问题的(拟)蒙特卡罗方法及其收敛性分析[D];大连理工大学;2010年
4 范晓娜;解变分不等式问题的同伦方法[D];大连理工大学;2008年
5 赵娜;解几类变分不等式总是的光滑算法[D];天津大学;2010年
6 王云娟;变分不等式问题的仿射内点信赖域方法和应用[D];上海师范大学;2009年
相关硕士学位论文 前10条
1 吴吉芳;一些变分不等式问题解的存在性与迭代算法[D];四川师范大学;2015年
2 张倩男;变分不等式问题投影收缩算法线搜索策略的改进[D];内蒙古工业大学;2015年
3 田琦;基于投影收缩的SA方法求解随机变分不等式问题[D];大连理工大学;2015年
4 刘相静;变分不等式问题的数值解法及其相关理论[D];青岛大学;2015年
5 范秋云;关于几类优化问题的讨论[D];苏州大学;2016年
6 王玉梅;系统半变分不等式问题的适定性研究[D];电子科技大学;2016年
7 彭自嘉;变分不等式问题的组合松弛算法[D];中南大学;2008年
8 岳丽;广义变分不等式问题的若干算法研究[D];曲阜师范大学;2005年
9 陶佳;广义向量隐拟似变分不等式问题[D];渤海大学;2012年
10 胡文彪;求解单调变分不等式问题的一类效益函数方法[D];大连理工大学;2009年
,本文编号:2159968
本文链接:https://www.wllwen.com/kejilunwen/yysx/2159968.html