具有某种特定属性的芬斯勒度量的构造
[Abstract]:Finsler geometry is a Riemann geometry with no quadratic constraints. Its theory and research methods have been widely used in information science and computer technology and become the development direction of differential geometry in the 21st century. The construction of dual flat Fensler metric is an extremely valuable problem in Finsler geometry. Based on this, some new examples of dual flat Finsler metric are given by solving dual flat partial differential equations. This paper is mainly divided into two parts: in the first part, we study the spherically symmetric Finsler metric F (XFN y) = Gy (?) on a convex set 惟 of Euclidean space. By solving the dual flat equation sfts fss 2ftg 0 of the Fensler metric, where t = x 2 / 2 / 2% SXMY / AII. Two classes of dual flat spherically symmetric Finsler metrics are given. One is that the function f is polynomial and the other is solving the equation by using the form of power series. In the second part, we study the generalized (伪, 尾) metric F = 伪 蠁 (b2, 尾 / 伪), where 伪 is Riemannian metric, 尾 is a form B = 尾 伪, and the dual flat equation is (蠁 2) 2 蠁 22 2s 蠁 1 蠁 22 s 蠁 1 蠁 2 2s 蠁 12 -4 蠁 10 0. By introducing the variable 蠄 = 蠁, we give the equivalent partial differential of dual flatness. The equation 蠁 22 s 蠁 12 -4 蠁 1 0 is solved. The special solutions of polynomial form and variable separation form are given, and the new generalized (伪, 尾) metric is a dual flat Finsler metric.
【学位授予单位】:安徽师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O186.1
【相似文献】
相关期刊论文 前10条
1 张淑洁;祖豆蔻;李本伶;;具有m次根的射影平坦芬斯勒度量(英文)[J];宁波大学学报(理工版);2011年03期
2 蒋经农;冯伟;;具有特别曲率性质的4次根芬斯勒度量[J];重庆理工大学学报(自然科学);2012年08期
3 曾高坚;;球对称外源的全屏蔽[J];湖南师范大学自然科学学报;1982年01期
4 谷超豪;非均匀的球对称引力坍缩问题[J];复旦学报(自然科学版);1973年03期
5 邹振隆;陈时;何祚庥;郭汉英;;重力规范理论的球对称星体模型[J];天文学报;1976年02期
6 谷超豪;球对称规范场的决定[J];复旦学报(自然科学版);1977年02期
7 周康巍 ,王慧素;配体场的球对称分量[J];四川大学学报(自然科学版);1985年04期
8 沈文达,朱莳通,王黎君;球对称激光等离子体中的快离子膨胀[J];物理学报;1985年09期
9 沈有根;高维静态球对称时空的内解[J];科学通报;1990年03期
10 田巨平;带扩散低浓度三分子模型的球对称结构研究[J];江汉石油学院学报;1990年04期
相关硕士学位论文 前4条
1 李璐璐;具有某种特定属性的芬斯勒度量的构造[D];安徽师范大学;2017年
2 陈亚力;一类射影平坦和对偶平坦球对称芬斯勒度量的构造[D];安徽师范大学;2015年
3 李影;含三参数的射影平坦芬斯勒度量的解析构造[D];安徽师范大学;2016年
4 秦春梅;两类重要的指数芬斯勒度量的某些性质[D];西南大学;2012年
,本文编号:2168404
本文链接:https://www.wllwen.com/kejilunwen/yysx/2168404.html