当前位置:主页 > 科技论文 > 数学论文 >

一类新型平均场偏微分方程的Sobolev解的概率解释

发布时间:2018-08-08 12:31
【摘要】:自2009年Buckdahn,Djehiche,Li和Peng[1]率先引入平均场倒向随机微分方程(简记为,MFBSDEs),这类方程就倍受关注。他们研究了 MFBSDEs和相应偏微分方程(简记为,PDEs)粘性解的关系。本文主要研究的是一类新型的平均场PDEs的弱解一 Sobolev解。与粘性解不同的是Sobolev解的存在唯一性不需要依赖于比较定理的结果,故方程的系数可以依赖于(?)。本文主要研究的方程形式如下:平均场SDE:平均场BSDE:以及新型平均场PDE:第一部分:主要的假设条件有:假设3.1:(A1)(i)函数b和σ关于(?),x满足Lipschitz条件。(ii)b(.,0,0)和σ(.,0,0)是F-循序可测连续函数且存在常数l0,使得对任意的0≤t≤T,(?),x(?)R~d(A2)(i)Φ是F(?)B(R)-可测随机变量,f(·,(?),x,(?),y,(?),z)是F-适应的可测过程,对任意的((?),x,(?),y,(?),z)∈ R~d × R~d × R~n × R~n × R~n×d × R~n×d 成立。且 f(t,(?),x,0,0,0,0)∈H_F~2(0,T;R~n)。(ii)f 关于 (?),x,(?),y,(?),z 满足 Lipschitz 条件。(iii)f和Φ满足线性增长条件,也就是说,存在c0,使得a.s.对任意的(?),x∈R~d,|f(t,(?),x,0,0,0,0)| + |Φ((?),x)| ≤c(1+|(?)|+|x|).(iv)G,θ,Ψ,κ:R~d→R~d,∧:R~d → R~d,Γ:R~n×d→R~n×d 的 Lipschitz 连续函数。(A3)给定((?))∈Rd × Rn × R×d,气对任意的s ∈[0,T],(x,y,z)→f(s,(?),x,(?),y,(?),z)∈Cb3,3,3(Rd × Rn × Rn×d,Rn).(A4)b ∈C61,3,3([0,T]× Rd × Rd,Rd)且 σ ∈Cb1,3,3([[0,T]× Rd ×RRd,Rd×d)。同时,我们给出值函数的定义为u(t,x)=Ytt,x。那么,在假设3.1下,平均场PDE(3)存在唯一解,且满足以下关系式Yst,x=u(s,Xxt,x),Zst,x= Dxu(s,Xst,x)σ(s,E[θ(Xs0,x0)],Xst,x).借助随机逆流、等价范数及测试函数,最终我们可以得到在假设3.1-(A2),(A4)下,u(t,x)=Ytt,x是平均场 PDE(3)的唯一 Sobolev 解。第二部分:第一,我们研究的是以下假设4.1条件成立的情况下,带全局单调系数的MFBSDE(2)解的存在唯一性定理。假设4.1:(H1)对任意固定的(ω,t),f(ω,t,.,.,.,.)连续;(H2)存在一过程ft∈HF2(0,T;R)和一个常数L0,使得|f(i,(?),(?),y,z)|≤ft + L(|(?)| + |(?)| + |y| + |z|).(H3)存在常数λ1,λ2 ∈ R,使得对任意的t∈[0,T],yi,(?)i ∈ Rn,z,(?) ∈ Rn×d(i = 1,2),(y1-y2)(f(t,(?),y1,(?),z)-f(t,(?),y2,(?),z))≤λ1(y1-y2)((?))+λ2|y1-y2|2.(H4)存在 L0,使得 P-a.s.对任意的t∈[0,T],y,y ∈ Rn,zi,zi ∈ Rn×d(i = 1,2),|f(t,y,y,z1,z1)-f(t,y,y,z2,z2)|2 ≤ L(|z1-z2|2 + |z1-z2|2).第二,我们研究的是带局部单调系数的MFBSDE(2)解的存在性和唯一性,假定如下条件成立,假设4.2:(H2,)存在L0和0 ≤ γ ≤ 1,使得|f(t,y,z,y,z)| ≤L(1 + |y|γ +|z|γ + |y|γ + |z|γ).(H3')对任意的N ∈ N,存在常数λN,λN∈R,使得对任意的t ∈[0,T],yi,yi∈Rn,z,z ∈ Rn×d 满足"yi|,|yi|,|z|,|z|≤N(i = 1,2),有(y1-y2)(f(t,y1,y1,z,z)-f(t,y2,y2,z,z))≤λN(y1-y2)(y1-y2)+ λN|y1-y2|2.(H4')对任意的N ∈N,存在LN0,使得P-a.s对任任的的f ∈[0,T],y,y∈Rn,zi,zi∈Rn×d满足|yi|,|yi|,|z|,|z|≤N(i=1,2),成立|f(t,y,y,z1,z1)-f(t,y,y,z2,z2)|2LN(|z1-z2|2 + |z1-z2|2).那么,我们可以得到在假设4.1-(H1)和假设4.2成立的情况下,且满足1 + exp(2L + 2|λN|+2λN-+ +2LNθ-1 + 2)→0,当N→∞时,(4)其中θ是一个任意固定的常数,使得0θ1-2α。带局部单调系数的MFBSDE(2)有唯一解(Y,Z)。第三:在前面的结论成立的情形下,我们可以开始研究相应平均场PDE(3)的Sobolev解的存在唯一性。首先,我们可以得到在以下假设下:假设4.3:(B1)6,σ 满足假设 3.1-(A1),(A4)。(B2)f,Φ 满足假设 3.1-(A2)-(i)(iii),以及假设 3.1-(A2)-(iv)成立,Φ ∈ L2(Rd,ρ(x)dx)。(B3)对任意的0≤t≤T,x1,x2,x1,x2∈Rn,y,y1,y2,y,y1,y2∈Rn,z,z1,z2,z,z1,z2 Rn×d,存在 C0,λ1,A2 ∈R,使得|Φ(x1,x1)-Φ(x2,x2)|2 +|f(t,x1,x1,y,y,z1,Z1)-f(t,x2,x2,y,y,z2,z2)|2C(|x1-x2|2 + |x1-x2|2 + |z1-z2|2 + |z1-z2|2).(y1-y2)(f(t,x1,x1,y1,y1,z,z)-f(t,x2,x2,y2,y2,z,z))≤ λ1(y1-y2)(y1-y2)+ λ2|y1-y2|2.(B4)|f(t,(?),x,(?),y,(?),z)| ≤ |f(t,(?),x,0,0,0,0)| + K(|y| + |y| + |z| + |z|),f(t,x,x,0,0,0,0)∈ L2(Rd,ρ(x)dx)且满足线性增长。值函数u(t,x):=Ytt,x是带全局单调系数的平均场PDE(3)的唯一Sobolev解。接着我们也可以得到在局部单调性的假设下平均场PDE的Sobolev解的存在唯一性定理的结论。相应的局部单调性假设,如下:假设4.4:(B3,)对任意的N ∈ N,存在LN0,λN,λN∈R,使得对x1,x1,x2,x2∈Rd,y1,y1,y2,y2∈Rn,z1,z1,z2,z2∈Rn×d,满足|y1|,|y1|,|y2|,|y2|,|z1|,|z1|,|z2|,|z2|≤N,成立|Φ(x1,x1)-Φ(x2,x2)|2 + |f(t,x1,x1,y1,y1,z1,z1)-f(t,x2,x2,y1,y1,z2,Z2)|2≤ LN(|x1-x2|2 + |x1-x2|2 + |z1-Z2|2 + |z1-z2|2),(y1-y2)(f(t,x1,x,x1,y1,y1,z1,z1)-f(t,x1,x1,y2,y2,z1,z1))≤ λN(y1-y2)(y1-y2)+ λN|y1-y2|2(B4,)存在K0和0≤γ≤1,使得|f(t,(?),x,(?),y,(?),z)|≤K(1 +|y|γ +|z|γ+ |y|γ +|z|γ),对任意的t,(?),x,(?),y,(?),z.于是,我们就可以得到在假设4.3-(B1),(B2),假设4.4和(4)式成立的条件下,带局部单调系数的平均场PDE(3)式存在唯一的Sobolev解。
[Abstract]:In 2009, Buckdahn, Djehiche, Li and Peng[1] took the lead in introducing the mean field backward stochastic differential equations (simple as, MFBSDEs). These equations are concerned. They have studied the relationship between MFBSDEs and the corresponding partial differential equation (Li, PDEs). This paper mainly deals with a new class of Weak Solutions of the mean field PDEs. The existence and uniqueness of the solution of Sobolev is not dependent on the result of the comparison theorem, so the coefficient of the equation can be dependent on (?). The main equations of this paper are as follows: the mean field SDE: mean field BSDE: and the new mean field PDE: first part: the main hypothesis conditions are: the 3.1: (A1) (I) function B and sigma (?), X satisfaction (II) B (., 0,0) and sigma (. 0,0) are F- sequential measurable continuous functions and exist constant l0, making any 0 less t less than T, (?), X (?) R~d (A2) is a measurable random variable. Constructs f importantly Marxism importantly Marxist Marxist Marxist Marxist Marxist Marxist Marxist Marxist societies traditions Marxism traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Marxist traditions Gamma: The Lipschitz continuous function of n * D. (A3) Rd * Rn x R x D, gas to any s [0, T]. Under assumption 3.1, the average field PDE (3) has a unique solution and satisfies the following relational expression Yst, x=u (s, Xxt, x), Zst, x= Dxu (s, Xst, x)). With the aid of random currents, equivalent norms and test functions, we can finally get the only solution of average field (3). Second: First, we study the existence and uniqueness theorem of MFBSDE (2) solution with global monotone coefficients under the condition of the following hypothesis 4.1 conditions. 4.1: (H1) is assumed to be arbitrarily fixed (omega, t), f (omega, t,,,.) continuous; (H2) there exists a process FT HF2 (? 0, T; R) and a constant L0. Beings Marxist Marxist traditions Marxist Marxist societies veins veins occasions veins veins veins occasions veins veins veins veins occasions veins veins veins veins veins veins occasions veins traditions souls veins veins veins occasions veins traditions souls veins veins veins veins veins occasions veins veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins traditions souls veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins it is the same. Z2|2 + |z1-z2|2). Second, we study the existence and uniqueness of the MFBSDE (2) solution with local monotone coefficient, assuming the following conditions are established, assuming that 4.2: (H2,) exists L0 and 0 < < < 1 >, and makes |f (T, y, Z, y, z) less than equal. Derive Rn clauses importantly Marxist traditions Marxist Marxist souls societies veins veins veins occasions veins veins veins veins veins veins occasions veins veins veins veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins occasions veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins occasions veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins veins Y, y, Z2, Z2) |2LN (|z1-z2|2 + |z1-z2|2). Then, we can get the assumption that 4.1- (H1) and hypothesis 4.2 are set up and satisfy the 1 + exp (2L + 2| lambda [lambda] [[lambda], theta 2) - 0. (4) theta is a arbitrarily fixed constant, which makes 0 theta 1-2 alpha (2) with local monotone coefficient. Third: Third: Third: Third: Third: before third: Third: before third: Third: Third: before third: Third: Third: before We can begin to study the existence and uniqueness of the Sobolev solution of the corresponding mean field PDE (3). First, we can get the following hypothesis: assuming 4.3: (B1) 6, sigma satisfies the hypothesis 3.1- (A1), (B2) f, and the hypothesis is assumed to be 3.1- (A2) - (I). , x1, X2, x1, Rn, Rn, y, Y1, Rn, Rn, Y1, Rn, Rn, Rn, Y1, Rn, Y1 less than 1, 1 and 2 |y1-y2|2. (B4) |f (T, (?), x, y, z), z) and K (x, 0,0,0,0) and satisfy linear growth. The corresponding local monotonicity hypothesis, as follows: assuming 4.4: (B3,) for arbitrary N N, LN0, N, N R. -f (T, X2, X2, X2, X2, X2, Y1, Y1, Y1, Y1, Y1) they are (?). So, we can get the only Sobolev solution of the mean field PDE (3) with local monotone coefficient under the assumption that 4.3- (B1), (B2), hypothesis 4.4 and (4) are established.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O211.63

【相似文献】

相关期刊论文 前10条

1 刘保华;李家荣;;手征相变的平均场分析[J];高能物理与核物理;1988年06期

2 马鹤来,苏育嵩;平均场分解初探[J];海洋学报(中文版);1987年04期

3 徐躬耦;;非厄密平均场的动态描述——一个简化模型之例[J];高能物理与核物理;1988年02期

4 马鹤来,苏育嵩;平均场分解初探[J];青岛海洋大学学报;1989年S1期

5 马中玉,,陈宝秋;1.28 超核性质的相对论平均场研究[J];中国原子能科学研究院年报;1995年00期

6 宁平治,谭玉红,李磊,罗延安;超核的相对论平均场计算(英文)[J];高能物理与核物理;2004年12期

7 魏成文;;对平均场模型的分析和改进[J];河北师范大学学报;1982年02期

8 沈姚崧,任中洲;对Λ超核的相对论平均场计算[J];高能物理与核物理;1997年09期

9 钟显辉,李磊,张小兵,宁平治;A~50区同位素的相对论平均场研究[J];高能物理与核物理;2003年07期

10 胡西多,邵明珠,罗诗裕,刘勇生,朱德海;二维晶化束的平均场概念和单粒子模型(Ⅱ)[J];高能物理与核物理;2004年02期

相关会议论文 前6条

1 吕炳楠;周善贵;赵恩广;;基于相对论平均场模型系统研究原子核裂变位垒[A];第十四届全国核物理大会暨第十届会员代表大会论文集[C];2010年

2 潘峰;;严格可解的平均场加对力模型综述[A];第十次全国核结构研讨会暨第六次全国核结构专题讨论会会议文集(二)[C];2004年

3 杨丁;马中玉;曹李刚;;连续相对论无规位相近似的研究[A];二00九全国核反应会暨生物物理与核物理交叉前沿研讨会论文摘要集[C];2009年

4 杨泗春;孟杰;周善贵;;基于相对论平均场的解析延拓方法对非束缚态能量和宽度的研究[A];Radioactive Nuclear Beam Physics--Proceedings of CCAST (World Laboratory) Workshop[C];2000年

5 李磊;党蕾;钟显辉;宁平治;;K-介子平均自由程的相对论平均场研究[A];第十一届全国中高能核物理大会暨第六届全国中高能核物理专题研讨会会议手册[C];2006年

6 申虹;;夸克平均场模型研究有限核及超核[A];第十二届全国核物理大会论文集(上)[C];2004年

相关博士学位论文 前3条

1 徐瑞民;平均场随机系统理论及其应用[D];山东大学;2014年

2 李瑞敬;平均场随机系统最优控制及其相关问题研究[D];华中科技大学;2015年

3 王延楠;核物质中的平均场及高阶项贡献的研究[D];南开大学;2012年

相关硕士学位论文 前10条

1 黄鹏琰;平均场倒向随机系统微分博弈理论及其应用[D];山东大学;2015年

2 颜浩;平方增长的平均场倒向随机微分方程[D];山东大学;2015年

3 张少鹏;平均场博弈模型及其在港口煤炭企业中的应用研究[D];燕山大学;2016年

4 叶雨松;基于平均场方法对社会自组织行为的研究[D];中国地质大学(北京);2016年

5 王垒;一般情形下的平均场随机最大值原理[D];山东大学;2017年

6 张晓;一般情形的平均场倒向随机微分方程[D];山东大学;2017年

7 苗颖婷;一类新型平均场偏微分方程的Sobolev解的概率解释[D];山东大学;2017年

8 呼黎明;对称保持平均场理论解决一维简单液体以及溶质-溶液体系[D];吉林大学;2017年

9 杜蘅;平均场倒向随机微分方程的性质及应用[D];山东大学;2012年

10 娄延俊;平均场倒向随机微分方程的线性二次最优控制及非零和微分对策[D];山东大学;2013年



本文编号:2171795

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2171795.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f685e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com