具有三物种的食饵-捕食反应扩散时滞系统的稳定性与行波解(英文)
[Abstract]:In this paper, we study a reaction-diffusion three-species predator-prey time-delay system with Neumann boundary conditions in a bounded region. By using the eigenvalue method and Lyapunov function, a sufficient condition for the stability of the equilibrium point of the system is obtained. This condition shows that the delay limits the stability of the system. One of the main conclusions of stability is that the positive equilibrium point is globally asymptotically stable when the intraspecific competition between prey and predator is larger than that between species. Furthermore, by constructing upper and lower solutions, it is proved that the system has a traveling wave solution connecting the zero equilibrium point and the positive equilibrium point when the wave velocity is relatively large.
【作者单位】: 红河学院数学学院;
【基金】:The National Natural Science Foundation of China(11461023) the Research Funds of Ph.D.for Honghe University(14bs19)
【分类号】:O175
【相似文献】
相关期刊论文 前10条
1 汤燕斌,罗琳;广义布森内斯克方程的显式行波解[J];华中科技大学学报(自然科学版);2004年10期
2 朱庆国;;关于一类非线性偏微分方程的异宿轨及其行波解[J];盐城工学院学报(自然科学版);2007年01期
3 唐生强;林松涛;;广义双耦合sinh-cosh-Gordon方程行波解的分支[J];桂林电子科技大学学报;2007年03期
4 唐生强;唐清干;;广义特殊Tzitzeica-Dodd-Bullough类型方程的行波解(英文)[J];数学杂志;2009年01期
5 张亮;张立凤;吴海燕;王骥鹏;;黏性水波振荡型行波解的存在性[J];物理学报;2009年02期
6 周学勤;刘保仓;;一类Zakharov-Kuznetsov型方程的周期行波解[J];天中学刊;2011年02期
7 宋明;唐治强;;(2+1)维广义Nizhnik-Novikov-Veselov方程的精确行波解[J];玉溪师范学院学报;2012年12期
8 王明新;非线性抛物型方程组的有限行波解(英文)[J];黄冈师专学报;1994年01期
9 李贵斌,胡京兴;非线性Pochhammer-Chree方程的有限行波解[J];北京工业大学学报;1999年01期
10 谷元,陈登远,谷艺;一个猎手——食饵系统的行波解[J];广西科学;1999年01期
相关会议论文 前5条
1 刘志芳;任志远;张善元;;大挠度梁中的非线性弯曲波及其精确行波解[A];第十届全国冲击动力学学术会议论文摘要集[C];2011年
2 杨高翔;徐鉴;;时滞Fisher-Kpp方程中行波解动力学行为的研究[A];第九届全国动力学与控制学术会议会议手册[C];2012年
3 吴涛;熊艳;;形变映射法求非线性方程的行波解[A];湖北省物理学会、武汉物理学会2004’学术年会论文集[C];2004年
4 杨高翔;徐鉴;;带时空时滞的单种群反应扩散模型中行波解的动力学行为[A];中国力学大会——2013论文摘要集[C];2013年
5 毕勤胜;;非线性耗散R(m,n)方程奇异分析[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
相关博士学位论文 前10条
1 李燕;带输入项的SIR传染病扩散模型的行波解[D];兰州大学;2015年
2 李想;具粘性项流体方程组行波解的求解和稳定性分析[D];上海理工大学;2014年
3 赵海琴;具有阶段结构种群模型的空间动力学研究[D];西安电子科技大学;2016年
4 林国;时滞Lotka-Volterra系统的行波解[D];兰州大学;2007年
5 赵烨;交错扩散方程组带边界层行波解的存在性和稳定性[D];首都师范大学;2007年
6 张国宝;非局部扩散方程的单稳行波解[D];兰州大学;2011年
7 张天然;两类种群模型行波解的存在性[D];西南大学;2013年
8 贺天兰;几类非线性方程的行波解研究[D];昆明理工大学;2013年
9 孙玉娟;非局部扩散方程的行波解和整体解[D];兰州大学;2010年
10 程翠平;二维格上具有年龄结构单种群模型的行波解[D];兰州大学;2010年
相关硕士学位论文 前10条
1 庞春平;一类耦合的Drinfeld-Sokolov方程的行波解[D];昆明理工大学;2005年
2 易亚婷;Kundu方程与Novikov方程的某些精确解[D];华南理工大学;2015年
3 王芳;一类非线性薛定谔方程行波解与一类Chua系统隐藏吸引子研究[D];昆明理工大学;2015年
4 李晗;一类体积填充型趋化性模型行波解的存在性[D];东北师范大学;2015年
5 朱文静;几类非线性方程的行波解分支与动力学研究[D];桂林电子科技大学;2015年
6 何彩霞;耦合KdV型方程有界行波解的存在性及其显式表达式[D];贵州民族大学;2015年
7 许文兵;一类非局部扩散传染病模型的行波解和整体解[D];兰州大学;2015年
8 郭宏骏;一类带时空时滞的双稳型非局部扩散方程的整体解[D];兰州大学;2015年
9 苏婷;不具有单调性的二阶积分差分方程的行波解及渐近传播速度[D];兰州大学;2015年
10 盖立涛;非线性偏微分方程的几类求解方法的探究及应用[D];内蒙古工业大学;2015年
,本文编号:2180117
本文链接:https://www.wllwen.com/kejilunwen/yysx/2180117.html