与薛定谔算子相关的Riesz变换和交换子在加权Morrey空间上的有界性(英文)
发布时间:2018-08-20 17:43
【摘要】:令L=-△+V是薛定谔算子,其中△是R~n上的拉普拉斯算子,并且非负位势V属于逆H?lder类Bq(q≥n/2).与算子L相关的Riesz变换记为T_1=V(-△+V)~(-1)和T_2=V~(-1/2)(-△+V)~(-1/2),对偶Riesz变换记为T_1~*=(-△+V)~(-1)V和T_2~*=(-△+V)~(-1/2)V~(-1/2).本文建立了T_1~*和T_2~*以及他们的交换子在与位势V∈Bq,q≥n/2相关的加权Morrey空间L_(α,V,ω)~(p,λ)(R~n)上的有界性.这些结果实质性地推广了一些已知的结果.作为应用,本文的结果可以应用于Hermite算子的情形.
[Abstract]:Let LG-V be a Schrodinger operator, where it is a Laplace operator on rn, and the nonnegative potential V belongs to the inverse H?lder class Bq (q 鈮,
本文编号:2194474
[Abstract]:Let LG-V be a Schrodinger operator, where it is a Laplace operator on rn, and the nonnegative potential V belongs to the inverse H?lder class Bq (q 鈮,
本文编号:2194474
本文链接:https://www.wllwen.com/kejilunwen/yysx/2194474.html