当前位置:主页 > 科技论文 > 数学论文 >

具奇异或退化性质的二阶抛物型方程的系数反演问题

发布时间:2018-08-24 08:11
【摘要】:本文主要考虑具奇异或退化性质的二阶抛物型方程的系数反演问题,研究在适当的附加条件下解的唯一性和条件稳定性,正则化问题的解的存在性,唯一性,稳定性,收敛性,以及有效的数值重构方法。第一章,首先介绍了偏微分方程系数反问题的研究背景,其后引入了本文的数学模型,并详细阐述了研究动机和研究的主要困难。第二章,介绍了一些函数空间和相应的积分嵌入理论,以及二阶抛物型方程的适定性结果,这些结果在后面章节的证明中起到了重要作用。第三章,研究了一个利用终端观测值确定二阶抛物型方程的辐射系数的反问题。与通常的终端控制问题不同,这里的观测数据仅在某个固定方向上给出,而不是整个区域,这会导致抛物型方程的共轭理论在此并不适用。另外,由于方程的定解域是圆或扇形,在极坐标下定解域可转化为一个矩形,但同时也会造成方程的主项系数奇异。为了克服系数奇异的困难,我们引入了一些赋权的Sobolev空间。基于最优控制理论框架,原问题被转化为一个优化问题。我们首先证明了极小元的存在性,并导出了极小元所满足的必要条件。利用极小元所满足的必要条件,以及正问题解的一些先验估计结果,我们证明了极小元的唯一性和稳定性。最后,为了说明最优控制问题的解和原问题的解之间的差异,我们还证明了极小元的收敛性,并给出了收敛阶。第四章,研究了一个利用附加条件同时重构二阶退化抛物型方程的初值和源项系数的反问题。该问题的主要特征有两点:(i)方程的主项系数在定解区域的两端都退化为零;(ii)方程中包含两个独立的未知函数,因之这是一个多参数反演问题。系数的退化性一方面会造成方程在定解域的部分边界上缺失边界条件,另一方面还会导致方程的解没有足够的正则性。首先,我们利用Carleman估计和对数凸性方法证明了原问题解的唯一性和条件稳定性。由于原问题的不适定性,我们利用优化方法将原问题转化为一个最优控制问题,并建立了正则化解的存在性,必要条件和收敛性。由于控制泛函含有两个独立的未知函数,且二者的地位并不相同,我们无法应用抛物型方程的共轭理论,否则无法得到正则化解的全局唯一性。我们这里采用的是分项估计的方法,并通过对必要条件的细致分析,最终得到了正则化解的全局唯一性和稳定性。第五章,讨论了前一章中提出的反问题的数值重构。我们利用Landweber迭代算法来求反问题的数值解,其中的关键是求出正问题算子的共轭算子的具体形式。然而,由于两个未知函数的相互耦合,我们很难直接看出共轭算子的结构。为此,我们采用算子分解方法,通过将正问题算子分解为四个独立的算子,并分别求出对应的共轭算子,最后再组合在一起而得到了正问题算子的共轭算子。我们还进行了数值实验,并给出了典型的具体算例。数值实验表明我们的算法是稳定而有效的,两个未知函数都重构得很好。
[Abstract]:In this paper, we consider the inversion of coefficients for second-order parabolic equations with singular or degenerate properties. We study the uniqueness and conditional stability of solutions under appropriate additional conditions, the existence, uniqueness, stability, convergence and effective numerical reconstruction methods of regularization problems. In the first chapter, we introduce the coefficients of partial differential equations. In the second chapter, we introduce some function spaces and integral embedding theories, and the well-posed results of second-order parabolic equations. These results play an important role in the proof of the following chapters. In this paper, we study an inverse problem for determining the radiation coefficients of a second order parabolic equation by means of terminal observations. Unlike ordinary terminal control problems, the observed data are given only in a fixed direction, not in the whole region. This leads to the fact that the conjugate theory of the parabolic equation is not applicable here. In addition, the definite solution of the equation is given. In order to overcome the difficulty of coefficient singularity, we introduce some weighted Sobolev spaces. Based on the framework of optimal control theory, the original problem is transformed into an optimization problem. We prove the uniqueness and stability of the minimal element by using the necessary conditions satisfied by the minimal element and some prior estimates of the solution of the positive problem. Finally, we prove the difference between the solution of the optimal control problem and the solution of the original problem. In Chapter 4, we study an inverse problem of simultaneous reconstruction of the initial and source coefficients of Second Order Degenerate Parabolic Equations by using additional conditions. The main characteristics of this problem are as follows: (i) the principal coefficients of the equations degenerate to zero at both ends of the given solution region; (i i) the equations contain two independent unknown functions, because On the one hand, the degeneracy of coefficients leads to the absence of boundary conditions on some boundaries of the solution domain, and on the other hand, the solution of the equation does not have enough regularity. For the ill-posedness of the original problem, we use the optimization method to transform the original problem into an optimal control problem, and establish the existence, necessary conditions and convergence of the regularized solution. The global uniqueness and stability of the regularized solution can not be obtained. In the fifth chapter, the numerical reconstruction of the inverse problem proposed in the previous chapter is discussed. We use Landweber iterative algorithm to solve the inverse problem. The key to the numerical solution of the problem is to find the concrete form of the conjugate operator of the operator of the positive problem. However, because of the coupling of two unknown functions, it is difficult to see the structure of the conjugate operator directly. Finally, the conjugate operator of the positive problem operator is obtained by combining the conjugate operator. Numerical experiments are carried out and a typical example is given. Numerical experiments show that our algorithm is stable and effective, and both unknown functions are well reconstructed.
【学位授予单位】:兰州大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O175.26

【相似文献】

相关期刊论文 前10条

1 魏光祖,袁忠信;一类伪抛物型方程组的特征问题[J];数学物理学报;1985年04期

2 吴仕先;抛物型方程的无限单元法[J];工程数学学报;1988年02期

3 边保军;一类抛物型方程的粘性解[J];浙江大学学报(理学版);2000年01期

4 孙仁斌;退缩抛物型方程解的存在性与爆破[J];中南民族大学学报(自然科学版);2002年02期

5 肖宏芳,孙波;固定点控抛物型方程的整体近似能控与有限维精确能控性(英文)[J];常德师范学院学报(自然科学版);2003年03期

6 陈世平;四阶抛物型方程一个两层的高精度隐式格式[J];泉州师范学院学报;2003年06期

7 陈世平;四阶抛物型方程一族三层的高精度隐式格式[J];泉州师范学院学报;2004年04期

8 高常忠,宋惠元;一类时滞非线性伪抛物型方程的有界解[J];应用数学;2004年S1期

9 肖宏芳,孙波;移动点控抛物型方程的精确零能控(英文)[J];湖南文理学院学报(自然科学版);2004年04期

10 杨柳,俞建宁,邓醉茶;一类抛物型方程反问题的适定算法设计[J];兰州交通大学学报;2005年03期

相关会议论文 前2条

1 袁光伟;沈隆钧;周毓麟;;抛物型方程的并行差分[A];中国工程物理研究院科技年报(2000)[C];2000年

2 袁光伟;盛志强;杭旭登;;具有界面修正项的二阶精度无条件稳定的并行格式[A];中国工程物理研究院科技年报(2005)[C];2005年

相关博士学位论文 前10条

1 杨柳;具奇异或退化性质的二阶抛物型方程的系数反演问题[D];兰州大学;2016年

2 曹杨;一类伪抛物型方程解的渐近行为及其在图像处理中的应用[D];吉林大学;2010年

3 温瑾;几类抛物型方程逆问题的数值方法研究[D];兰州大学;2011年

4 高夫征;抛物型方程组的数值方法和分析[D];山东大学;2005年

5 李慧玲;几类抛物型方程解的定性研究[D];东南大学;2006年

6 李振邦;一类非局部抛物型方程的若干问题[D];吉林大学;2014年

7 田玉娟;Gauss对称在椭圆型与抛物型方程中的应用[D];大连理工大学;2010年

8 孔令花;具有加权非局部源的非线性抛物型方程[D];大连理工大学;2008年

9 谷伟;倒向问题的随机数值算法研究[D];华中科技大学;2008年

10 刘丙辰;关于多重耦合非线性抛物型方程组的几个问题[D];大连理工大学;2006年

相关硕士学位论文 前10条

1 邱志勇;对流层电磁波传播的抛物型方程法研究[D];郑州大学;2015年

2 吕晓双;几类抛物型方程解的爆破分析[D];天津大学;2014年

3 杨蕊;具有非局部项的抛物型方程解的定性性质[D];中国海洋大学;2015年

4 陈祥瑞;几类抛物型方程正反问题的数值计算[D];东华理工大学;2014年

5 杨秀玲;几类抛物型方程的源型解[D];吉林大学;2009年

6 郑涛;解抛物型方程的并行算法及其并行实现[D];吉林大学;2009年

7 吴凡;大气波导中的抛物型方程法研究[D];武汉理工大学;2008年

8 卢宏鹏;二维抛物型方程参数反演的迭代算法研究[D];西安理工大学;2010年

9 黎杨;抛物型方程的有限差分解法及其在复杂电磁环境中的应用[D];武汉理工大学;2010年

10 张仁宁;两类时滞抛物型方程的三次样条解法[D];哈尔滨工业大学;2010年



本文编号:2200173

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2200173.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户441ff***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com