几类界面问题的非拟合有限元方法分析
[Abstract]:Interface problems often occur in material science, solid mechanics and fluid dynamics. For example, heat conduction problem with different conduction coefficient, elastic problem with different material behavior and two-phase flow problem with different viscosity coefficient, etc. At present, the research on numerical methods of interface problems has become one of the hotspots in the field of scientific calculation and engineering. The main purpose of this paper is to construct some new finite element methods to solve interface problems and analyze them numerically under unfitted meshes (i.e. mesh generation and interface position independence). Firstly, based on the ideas of Nitsche method and LDG method, we propose a class of discontinuous Galerkin methods for solving elliptic interface problems. The key of this method is to replace the algebraic average in the classical discontinuous Galerkin method with the weighted average on the interface in the bilinear form of the discrete problem. We obtain the optimal error estimation which is independent of the interface position. Numerical examples verify our theoretical results. Secondly, in order to solve the problem of stiffness matrix ill-condition effectively, we propose a new class of discontinuous Galerkin method. The mesh generation of the non-fitting method is independent of the interface position, which leads to the appearance of very small elements near the interface, which makes the stiffness matrix of the discrete problem seriously ill-conditioned. In order to avoid the direct use of these very small elements, we use the larger elements adjacent to them as their extension elements, which leads us to prove the classical inverse inequalities. Thus, we obtain the optimal error estimation and the condition number of stiffness matrix (O (h-2)., which are independent of the position of the interface. Then, we extend this method to elastic interface problem and Stokes interface problem. For the elastic interface problem, we propose a nonfitting asymmetric discontinuous Galerkin method and prove a new continuation theorem. By using the properties of classical BDM interpolation, the optimal error estimation (Locking-free) is obtained, which is independent of the interface position and the input of Lame constant. For the Stokes interface problem, we propose a discontinuous Galerkin method with penalty speed jump term and stress jump term. The inf-sup stability conditions are proved by using some special techniques, and the optimal error estimates in the sense of energy norm are obtained. Moreover, it is proved that the condition number of stiffness matrix for these two discrete problems is independent of the interface position. Finally, we propose a stable Nitsche finite element method for solving Stokes interface problems. We use the lowest order equal-order finite element method to approximate the velocity and pressure space respectively. Combining the local projection method and the ghost penalty method, we prove the inf-sup stability condition and obtain the optimal error estimates in the sense of energy norm and L 2 norm. It is also proved that the condition number of stiffness matrix is independent of the interface position. Numerical examples verify our theoretical results.
【学位授予单位】:南京师范大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O241.82
【相似文献】
相关期刊论文 前2条
1 王刚锋,余寿文;考虑转动梯度的界面问题研究[J];固体力学学报;2001年01期
2 ;[J];;年期
相关会议论文 前3条
1 刘冲;郭邵斌;;复合材料的界面问题[A];第九届全国结构工程学术会议论文集第Ⅰ卷[C];2000年
2 袁新强;;复合材料的界面问题[A];第十七届玻璃钢/复合材料学术年会论文集[C];2008年
3 杨万泰;;高分子材料表/界面问题及C-H键转换新化学——由化学到化工技术[A];2010年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2010年
相关博士学位论文 前3条
1 董海霞;求解界面问题的扩展杂交间断有限元方法研究[D];湖南师范大学;2016年
2 王秋亮;几类界面问题的非拟合有限元方法分析[D];南京师范大学;2015年
3 刘建康;基于ADI和IIM的界面问题算法研究[D];中南大学;2012年
相关硕士学位论文 前7条
1 荆文军;无单元Galerkin方法及其应用[D];苏州大学;2016年
2 白进纬;IFE-PIC数值模型界面问题处理方法的研究[D];哈尔滨工业大学;2016年
3 王峰;各向异性椭圆界面问题的间断有限元方法[D];山东师范大学;2014年
4 薛芳;三维椭圆型界面问题的有限差分法[D];河北工业大学;2015年
5 李惠娟;消除奇异源求解三维椭圆型界面问题的有限差分法[D];河北工业大学;2012年
6 邹世俊;一类抛物型界面问题的浸入有限元方法[D];山东师范大学;2015年
7 楚豫川;电磁场中有关界面问题数值方法的研究[D];哈尔滨工业大学;2009年
,本文编号:2209211
本文链接:https://www.wllwen.com/kejilunwen/yysx/2209211.html