快递需求量组合预测模型构建及实证研究
[Abstract]:With the world trade and domestic trade activities becoming more and more lively, express delivery plays an increasingly important role in social and economic activities, driving the development of other economic industries, so the government attaches great importance to it. The government has issued express industry guidance and planning to guide the steady development of China's express industry. Express demand forecast is the basis of express delivery industry planning. In view of this, this paper regards express demand forecast as research object, aiming at establishing suitable express demand forecasting model, which has certain practical value. According to the related documents of express delivery industry and the actual situation of our country, this paper analyzes the characteristics of express demand in China, the influencing factors of express demand and the forecasting steps of express demand. Considering the availability of data, this paper selects 8 indexes related to the demand of express delivery, such as the total retail volume of consumer goods in GDP, postal business volume, the number of Internet users and the volume of goods turnover, and constructs the prediction index system. The grey correlation degree between the demand for express delivery and the eight indexes is quantitatively analyzed by the grey correlation method, and the conclusion is drawn that the demand for express delivery in China has been most affected by the total import and export volume and the volume of postal business since 2006. In order to achieve the purpose of easy operation, high accuracy and strong applicability, the grey prediction model, the trend extrapolation model and the multivariate linear regression model in the time series model, the trend extrapolation method and the causality model are selected from the existing prediction methods. Combined with the principle of Shapley value allocation, the combined prediction model is established. Finally, take Sichuan express demand as the research object, collect the relevant independent variables statistical index of Sichuan province from 2006 to 2016, forecast and verify the Sichuan express demand. The result shows that the combined forecasting model is suitable for express delivery demand forecast. Accuracy is high, meet actual demand, but can only be used in the short and medium term forecast; Sichuan express demand will continue to grow in the next few years.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F224;F259.2
【参考文献】
相关期刊论文 前10条
1 商丰瑞;张静;;基于SARIMA模型的我国快递业务量预测[J];现代经济信息;2016年20期
2 文静;;基于因子分析法的安徽省主要城市快递业市场容量比较研究[J];湖北经济学院学报(人文社会科学版);2016年02期
3 张宛姝;于万堂;;快递业与电子商务的产业关联关系实证分析[J];中国管理信息化;2016年03期
4 许良;吕岳林;张金芳;;秦皇岛市快递业与区域经济相互作用模型研究[J];物流科技;2015年11期
5 王莲花;宋芳;;基于灰色关联分析的山东省快递业影响因素研究[J];物流技术;2015年13期
6 郭福利;张春生;;快递业研究综述[J];物流工程与管理;2015年06期
7 张光明;王路;;快递服务网点选址模型研究[J];江苏科技大学学报(自然科学版);2015年02期
8 梁会民;陈文月;殷洁;丁亚晨;刘鑫;;基于网络分析的快递网点布局优化研究[J];物流科技;2015年04期
9 匡晓明;魏本胜;;城市规划中快递网点服务区预测与评价[J];江苏城市规划;2015年03期
10 段水利;;我国快递业发展影响因素实证分析[J];物流工程与管理;2015年01期
相关博士学位论文 前2条
1 杜艳;我国快递业对国民经济增长作用机制研究[D];北京邮电大学;2013年
2 匡旭娟;演化视角下的快递业网络形态研究[D];北京交通大学;2008年
相关硕士学位论文 前10条
1 李燕芝;区域快递业务量预测及接驳点选址问题研究[D];浙江工商大学;2015年
2 姜博;基于Shapley-组合预测的区域物流需求预测及实证研究[D];安徽理工大学;2015年
3 韩姣;山西快递市场的需求预测研究[D];西安建筑科技大学;2015年
4 谢夏成;上海地区快递物流节点的空间格局分析[D];上海师范大学;2015年
5 李妮娜;基于中心地理论的城市快递服务网点选址研究[D];北京交通大学;2015年
6 曹雪梅;河北省快递业升级能力评价及提升对策研究[D];燕山大学;2014年
7 季彤;快递业发展影响因素分析[D];南京邮电大学;2012年
8 李俊英;基于产业关联的我国快递产业的发展研究[D];上海师范大学;2011年
9 姜涛;南方快递信息系统体系模型研究[D];北京交通大学;2008年
10 邱官升;快递业服务质量分析与改善方法研究[D];长安大学;2008年
,本文编号:2209354
本文链接:https://www.wllwen.com/kejilunwen/yysx/2209354.html