一类平面3次扩展拟齐次系统的分岔
发布时间:2018-08-28 18:44
【摘要】:本文研究一类平面3次扩展拟齐次多项式微分系统的分岔问题;证明在3参数族(a,b,c)∈R~3中,此系统不存在极限环;运用拟齐次吹胀(blow-up)和无穷远奇点的Poincaré-Lyapunov紧化等方法,给出系统的全局拓扑相图.
[Abstract]:In this paper, the bifurcation problem of a class of planar cubic extended quasi-homogeneous polynomial differential systems is studied. It is proved that there is no limit cycle for a class of 3-parameter families (aqbc) 鈭,
本文编号:2210276
[Abstract]:In this paper, the bifurcation problem of a class of planar cubic extended quasi-homogeneous polynomial differential systems is studied. It is proved that there is no limit cycle for a class of 3-parameter families (aqbc) 鈭,
本文编号:2210276
本文链接:https://www.wllwen.com/kejilunwen/yysx/2210276.html