分数阶常微分方程多点边值问题的上下解方法
发布时间:2018-09-01 06:33
【摘要】:本文应用上下解方法研究了如下分数阶常微分方程多点边值问题{x~((δ))(t)=f(t,x(t)),t∈[a,b],a0,x(a)+m∑k=1a_kx(t_k)=c解的存在性,其中f:[a,b]×R→R是L~1-Carathéodory函数,δ∈(0,1],c∈R,t_k(k=1,2,…,m)为满足at_1t_2…t_mb,a_k0以及1+m∑k=1a_k0的常数.
[Abstract]:In this paper, we use the method of upper and lower solutions to study the existence of solutions for the following multipoint boundary value problems of fractional order ordinary differential equations {x ~ (未) (t) f (t + x (t) t 鈭,
本文编号:2216401
[Abstract]:In this paper, we use the method of upper and lower solutions to study the existence of solutions for the following multipoint boundary value problems of fractional order ordinary differential equations {x ~ (未) (t) f (t + x (t) t 鈭,
本文编号:2216401
本文链接:https://www.wllwen.com/kejilunwen/yysx/2216401.html