基于矩阵填充的链接预测算法研究
[Abstract]:In recent years, with the rapid development of web2.0 technology, the scale of social network is also growing, complex network analysis has become an important research task for researchers. As a branch of complex network analysis, link prediction is widely used in social network, biological information network, food web and many other aspects closely related to human life. Therefore, this paper delves into the problem of link prediction. In the field of data mining, the problem of link prediction plays a very important role in estimating the probability of the existence of links between two disconnected nodes based on the known information of the network. As an important research content in the field of data mining, link prediction has been studied for many years. It is divided into two types: one predicting unknown links and the other predicting future links. The first is to mine links that should exist but are not known, and the second is to predict links that do not exist in existing networks but may occur in the future. This paper focuses on predicting unknown links. The existing link prediction algorithms are divided into four categories: link prediction based on topology; link prediction based on sociological theory; link prediction based on machine learning; and link prediction based on matrix analysis. In this paper, the first point and the fourth point of the in-depth study. Put forward the following points of innovation: 1. In this paper, the link prediction algorithm based on topology structure is improved, and a new similarity measure method, CN-RA., is proposed by combining CN algorithm with RA algorithm. This method not only considers the number of common neighbors in the social network, but also considers the influence of a single common neighbor node on the node similarity. Compared with the CN algorithm and other benchmark algorithms based on topology structure, this method is more effective than the traditional algorithm. Better prediction effect. 2. 2. In this paper, a link prediction framework based on multi-feature fusion is proposed. Inspired by the existing link prediction methods based on matrix filling, we deeply study the augmented Lagrangian multiplier algorithm-ALM. Because the adjacent matrix of social network is of low rank, we can use ALM algorithm to optimize the adjacent matrix and solve the problem of link prediction. Based on this method, a link prediction framework based on multi-feature fusion is proposed, which combines topology features with low-rank features, and is verified by experiments. The experimental results show that compared with the traditional topology based method and the ALM algorithm alone, the prediction effect of this framework is further improved. At the same time, the framework also ensures scalability, and other features (such as node attribute information, sociological information) can be combined to further analyze the dynamic network link prediction problem. In order to verify the feasibility and validity of the above two points, this paper selects three real data sets for experimental verification, one is the USAir dataset net Science dataset and the other is the CN,AA,PA,RA,Jaccard method. ROC curves and AUC values were used to evaluate the experimental results. The experimental results show that the method proposed in this paper can achieve the expected prediction effect, and the link prediction framework with multiple features can significantly improve the prediction effect.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O157.5;TP311.13
【相似文献】
相关期刊论文 前10条
1 龚振和;基于矩阵表示和合一操作的并行推理方法[J];计算机学报;1988年02期
2 ;1998年第24期擂台赛点评[J];电脑爱好者;1999年06期
3 郝家欍;矩阵、概率与统计自学参考[J];煤矿机械;1985年03期
4 谭琼;如何形成网络流规划中的路矩阵[J];系统工程理论与实践;1992年04期
5 王以德,贾力普;快速算法及矩阵的新式分解[J];计算机应用与软件;1984年03期
6 黄禄炳,黄显高;矩阵应用中值得注意的问题[J];西安邮电学院学报;1997年01期
7 李大农;汉字邻接频率的矩阵表示[J];黄冈师专学报;1997年01期
8 杨秀文,严尚安,张洁,曾顺鹏;可达矩阵的新求法[J];电子科技大学学报;2000年06期
9 樊葆华;窦强;张鹤颖;;网络演算的矩阵解释[J];计算机学报;2009年12期
10 冯春生;;2维空间填充曲线的块矩阵迭代法[J];计算机工程与应用;2011年12期
相关会议论文 前2条
1 杨伟;;模糊软矩阵及其格结构[A];中国运筹学会模糊信息与模糊工程分会第五届学术年会论文集[C];2010年
2 陈文康;姚陈;;对Bond变换的若干思考[A];中国地球物理·2009[C];2009年
相关重要报纸文章 前1条
1 金_g;IT自考学习资源大搜索(一)[N];中国电脑教育报;2002年
相关博士学位论文 前9条
1 贺杨成;半监督低秩矩阵学习及其应用[D];上海交通大学;2015年
2 陈梅香;广义二次矩阵的若干研究[D];福建师范大学;2016年
3 郝晓丽;粒度格矩阵空间模型及其应用研究[D];太原理工大学;2009年
4 韩曦;基于多维矩阵的移动通信信号检测及参数估计技术研究[D];北京邮电大学;2013年
5 张芬;基于低秩矩阵填充的相位检索方法研究[D];安徽大学;2015年
6 方茂中;关于矩阵填充和非负矩阵的研究[D];华东师范大学;2008年
7 陈娜;矩阵恢复算法及误差分析[D];华中科技大学;2012年
8 耿娟;低秩矩阵与张量完整化问题的算法研究[D];中国农业大学;2014年
9 田贵贤;图谱理论和几类矩阵的谱与组合特征研究[D];电子科技大学;2009年
相关硕士学位论文 前10条
1 崔翔;基于卷积压缩感知的确定性测量矩阵研究[D];北京化工大学;2015年
2 吴曼;SDN在IP网络的流量调度应用研究[D];电子科技大学;2015年
3 王浩;带噪声抑制的流量矩阵估计方法研究[D];电子科技大学;2015年
4 张婷婷;基于低秩矩阵填充与恢复的图像去噪方法研究[D];河北工业大学;2015年
5 邓爱淘;基于LDPC码的压缩感知测量矩阵研究[D];湘潭大学;2015年
6 白平;基于拓展全息矩阵的变胞机构创新设计研究[D];武汉轻工大学;2015年
7 吴越;Vandermonde矩阵的理论与应用研究[D];安徽大学;2016年
8 曹萌;几类Bezout矩阵的研究[D];安徽大学;2016年
9 唐云;基于Spark的大规模分布式矩阵运算算法研究与实现[D];南京大学;2016年
10 陈露;关于矩阵运算的公开可验委托计算的研究与分析[D];苏州大学;2016年
,本文编号:2229264
本文链接:https://www.wllwen.com/kejilunwen/yysx/2229264.html