非李普希兹条件下G-布朗运动驱动的随机微分方程的随机平均原理研究(英文)
[Abstract]:In practice, the non-Lipschitz condition is weaker than the Lipschitz condition. This paper considers the stochastic differential equation driven by G-Brownian motion under the non-Lipschitz condition, and establishes the stochastic averaging principle of this kind of equation. It is proved that the solution of the average post-equation converges to the solution of the original equation in the mean-square sense. A concrete example is given to illustrate the effectiveness of the stochastic averaging method established in this paper.
【作者单位】: 西北农林科技大学理学院;
【分类号】:O211.63
【相似文献】
相关期刊论文 前10条
1 丁灯,郑小任;一类具有随机反射边界的随机微分方程(Ⅰ)[J];中山大学学报(自然科学版);2000年04期
2 让光林,万成高;两参数跳型随机微分方程解的存在性和唯一性[J];湖北大学学报(自然科学版);2000年01期
3 李芳,赵生变;一个随机微分方程的研究[J];北方交通大学学报;2001年06期
4 姜秀英,臧国心;随机微分方程解的一个边界性态[J];哈尔滨师范大学自然科学学报;2002年03期
5 江秉华;以连续鞅为驱动的随机微分方程解的迭代收敛性[J];湖北师范学院学报(自然科学版);2005年03期
6 鲍建海;曹梅英;刘霞;;马尔可夫调制随机微分方程的平均稳定性[J];华东交通大学学报;2006年01期
7 王拉省;薛红;聂赞坎;;带跳的时滞随机微分方程近似解的收敛性(英文)[J];应用数学;2007年01期
8 何新安;;随机微分方程在水文地质计算中的应用[J];今日科苑;2008年14期
9 王子亭;李萍;;分数随机微分方程的一般解[J];中国石油大学学报(自然科学版);2009年01期
10 朱庆峰;石玉峰;;正倒向重随机微分方程[J];数学物理学报;2009年04期
相关会议论文 前5条
1 吴晓群;赵雪漪;吕金虎;;节点动力学含随机噪声的复杂动力网络拓扑结构识别[A];中国自动化学会控制理论专业委员会A卷[C];2011年
2 王要策;胡良剑;;马尔科夫切换型随机微分方程Milstein方法的p阶矩指数稳定性[A];第四届中国智能计算大会论文集[C];2010年
3 龙红卫;;平面上随机微分方程的ε-最优控制[A];企业发展与系统工程——中国系统工程学会第七届年会论文集[C];1992年
4 黄成毅;冯长水;;具有时滞状态反馈的Duffing-van der Pol系统的随机响应与可靠性[A];中国力学大会——2013论文摘要集[C];2013年
5 郭雷;;连续系统的近似极大似然估计:存在性与收敛性[A];1991年控制理论及其应用年会论文集(下)[C];1991年
相关博士学位论文 前10条
1 张玉天;若干随机微分方程的稳定性问题[D];吉林大学;2015年
2 王秋晰;随机微分方程最优控制理论的若干问题[D];吉林大学;2015年
3 李宇勐;随机偏微分方程的中偏差及应用[D];中国科学技术大学;2016年
4 王文鹤;有关随机微分方程概周期解的若干问题[D];吉林大学;2016年
5 罗鹏;G—布朗运动驱动的随机微分方程[D];山东大学;2016年
6 冯新伟;基于排序的正倒向随机微分方程与非线性期望[D];山东大学;2016年
7 魏超;几类It(?)随机微分方程的参数估计[D];东华大学;2016年
8 杜元花;几类随机微分方程的稳定性分析[D];电子科技大学;2016年
9 罗超良;随机微分方程的稳定性及分岔研究[D];湖南大学;2016年
10 匡能晖;关于由次分数Brown运动驱动的随机微分方程的研究[D];武汉大学;2014年
相关硕士学位论文 前10条
1 夏周霞;随机微分方程的稳定性分析与应用[D];湖南大学;2010年
2 贾小青;对两类随机微分方程解的性质的研究[D];哈尔滨工业大学;2010年
3 温建洪;倒向重随机微分方程解的收敛性[D];山东大学;2005年
4 褚风庆;倒向重随机微分方程一些相关问题的研究[D];山东大学;2011年
5 谢晶晶;一维随机微分方程的稳定性[D];华中科技大学;2011年
6 姜世龙;随机微分方程依路径随机周期解的存在性[D];吉林大学;2013年
7 李玉婷;一类非线性随机微分方程的指数稳定性[D];郑州大学;2015年
8 王红;带跳的分段连续型随机微分方程数值方法的收敛性[D];哈尔滨工业大学;2015年
9 严伟;随机微分方程的递延校正解[D];山东大学;2015年
10 郭凤禹;随机比例方程的两类分步THETA方法[D];哈尔滨工业大学;2015年
,本文编号:2235906
本文链接:https://www.wllwen.com/kejilunwen/yysx/2235906.html