当前位置:主页 > 科技论文 > 数学论文 >

一类随机变量加权和的完全收敛性

发布时间:2018-09-14 14:55
【摘要】:在本文中,我们主要研究满足Rosenthal型不等式的一类随机变量加权和(?)aniXi的完全收敛性.第一章介绍了研究问题的背景以及加权和在统计及概率两方面的重要应用,重点是在统计方面的现实意义,加权和在概率统计中的广泛应用使得对加权和的研究变得非常重要.第二章介绍了很多相关基本知识,如基本的收敛性,Rosenthal不等式,以及完全收敛性等,又介绍了相关引理及不等式,还包含了一些前人的研究成果,提出了我们的研究方向,为本文的研究打下了良好的基础.第三章讨论了随机变量加权和(?)aniXi在两种条件下的完全收敛性,并做出了一定的推广.本章采用截尾:Markov不等式等方法,在更弱的条件下,研究了满足Rosenthal不等式的一类随机变量加权和的完全收敛性,所得结果改进和推广了已有文献的一些结果.
[Abstract]:In this paper, we mainly study the complete convergence of the weighted sum (?) aniXi of a class of random variables satisfying the Rosenthal type inequality. In the first chapter, the background of the research and the important applications of weighted sum in statistics and probability are introduced. The emphasis is on the practical significance in statistics. The wide application of weighted sum in probability and statistics makes the study of weighted sum very important. In the second chapter, we introduce a lot of basic knowledge, such as the basic convergence of Rosenthal inequality, complete convergence and so on. We also introduce the relevant Lemma and inequality, and also include some previous research results, and put forward our research direction. It lays a good foundation for the research of this paper. In chapter 3, we discuss the complete convergence of weighted random variables and (?) aniXi under two conditions, and generalize them to a certain extent. In this chapter, the complete convergence of the weighted sum of a class of random variables satisfying the Rosenthal inequality is studied under weaker conditions by means of truncated Rosenthal inequality. The results obtained improve and generalize some of the results in previous literatures.
【学位授予单位】:河南师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O211.4

【参考文献】

相关期刊论文 前10条

1 兰冲锋;;一类随机变量加权和的完全收敛性[J];吉林大学学报(理学版);2016年03期

2 沈燕;杨洁;刘溪;;END随机变量加权和的强极限定理[J];安徽大学学报(自然科学版);2015年05期

3 甘师信;陈平炎;;SOME LIMIT THEOREMS FOR WEIGHTED SUMS OF ARRAYS OF NOD RANDOM VARIABLES[J];Acta Mathematica Scientia;2012年06期

4 张勇;董志山;赵世舜;;相依序列加权和的几乎处处中心极限定理[J];数学物理学报;2009年06期

5 ;Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications[J];Science in China(Series A:Mathematics);2009年09期

6 邱德华;;B值独立随机元序列加权和的完全收敛性和强大数律(英文)[J];数学研究与评论;2009年03期

7 甘师信;陈平炎;;SOME LIMIT THEOREMS FOR SEQUENCES OF PAIRWISE NQD RANDOM VARIABLES[J];Acta Mathematica Scientia;2008年02期

8 陆传荣,邱瑾;线性模型误差方差估计的精确极限性质[J];数学年刊A辑(中文版);2005年01期

9 陈瑞林;不同分布的NA列的加权和的强收敛速度[J];应用概率统计;2004年01期

10 吴群英;两两NQD列的收敛性质[J];数学学报;2002年03期

相关硕士学位论文 前1条

1 赵目;独立随机变量序列加权和的重对数律[D];安徽大学;2004年



本文编号:2243040

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2243040.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8f153***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com