几类Caputo分数阶方程的边值问题解的存在性
发布时间:2018-10-08 07:40
【摘要】:分数阶微分方程和差分方程不仅对科学、工程、化学、物理、生物等领域的许多问题给出了合理的描述,而且应用十分广泛。例如扩音器进行反馈和分析、热传导领域和流体学等。因此研究分数阶方程边值问题有着重要的意义。本文的主要研究工作简要叙述如下:1.研究了下面非线性分数阶微分方程边值问题其中f:[0,+∞)×R→[0,+∞)是连续的,α∈(2,3],CD0+α是标准的Caputo微分。通过使用S chauder不动点理论和锥拉伸与锥压缩不动点定理得到上述边值问题的一些正解的存在性结果。这里的解是锥的内点。最后,通过三个例子验证了主要结论的有效性。2.研究了下面带有非局部条件的Caputo分数阶差分方程系统t∈[0,b+1]N.:={0,1,...,b+1},b3,2vj≤3,fj:Rn→R是给定的连续函数,φj,ψj,φj:Rb+4→R对于每个j(j=1,2…n)是给定的连续函数,△Cvy(t)是标准的Caputo差分。我们利用Banach不动点原理Brouwer不动点原理得到上述边值问题的一些解的存在性结果。最后,提供了两个例子验证了主要结论的有效性。3.研究了以下Caputo分数阶差分方程边值问题其中,t∈{0,1,...,b+1):=[0,b+1]N0,b5是一个整数。f:[V-2,b+v]N-2×R→R是连续的,f是非零的,2v≤3,△Cvy(t)是标准的Caputo差分。通过运用Schauder不动点原理和离散分数阶微积分理论证明了解的存在性结果。最后,给出例子表明了主要结果的有效性。
[Abstract]:Fractional differential equations and difference equations not only give a reasonable description of many problems in the fields of science, engineering, chemistry, physics and biology, but also are widely used. For example, loudspeaker feedback and analysis, the field of heat conduction and fluid science and so on. Therefore, it is of great significance to study the boundary value problem of fractional order equation. The main research work of this paper is as follows: 1. In this paper, the following nonlinear boundary value problems for fractional differential equations are studied, where f: [0, 鈭,
本文编号:2255963
[Abstract]:Fractional differential equations and difference equations not only give a reasonable description of many problems in the fields of science, engineering, chemistry, physics and biology, but also are widely used. For example, loudspeaker feedback and analysis, the field of heat conduction and fluid science and so on. Therefore, it is of great significance to study the boundary value problem of fractional order equation. The main research work of this paper is as follows: 1. In this paper, the following nonlinear boundary value problems for fractional differential equations are studied, where f: [0, 鈭,
本文编号:2255963
本文链接:https://www.wllwen.com/kejilunwen/yysx/2255963.html