一类缺项四分块算子矩阵的补问题
发布时间:2018-10-21 19:32
【摘要】:基于右上角元素值域的闭性和某空间族的维数扰动,得到了缺项四分块算子矩阵(?ABC)存在可逆补,Fredholm补的一个新的充分必要条件,结果表明该类补问题可以转化为缺项上三角算子矩阵的可逆补,Fredholm补加以解决.
[Abstract]:Based on the closeness of the range of elements in the upper right corner and the dimension perturbation of a family of spaces, a new sufficient and necessary condition for the existence of reversible complement and Fredholm complement for a four-block operator matrix (? ABC) is obtained. The results show that this kind of complementarity problem can be transformed into invertible complement of triangular operator matrix over deficient items and solved by Fredholm complement.
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O177
本文编号:2286142
[Abstract]:Based on the closeness of the range of elements in the upper right corner and the dimension perturbation of a family of spaces, a new sufficient and necessary condition for the existence of reversible complement and Fredholm complement for a four-block operator matrix (? ABC) is obtained. The results show that this kind of complementarity problem can be transformed into invertible complement of triangular operator matrix over deficient items and solved by Fredholm complement.
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O177
【参考文献】
相关期刊论文 前5条
1 黄俊杰;阿拉坦仓;王华;;上三角算子矩阵谱的自伴扰动[J];数学学报;2010年06期
2 李愿;杜鸿科;;缺项算子矩阵的本性谱(英文)[J];数学研究与评论;2008年02期
3 黄俊杰;李春光;阿拉坦仓;;2×2上三角算子矩阵的点谱扰动[J];系统科学与数学;2014年02期
4 齐雅茹;黄俊杰;阿拉坦仓;;无界形式Hamilton算子的可逆性[J];数学物理学报;2014年05期
5 Ya-ru QI;Jun-jie HUANG;ALATANCANG;;Left Invertible Completions of Upper Triangular Operator Matrices with Unbounded Entries[J];Acta Mathematicae Applicatae Sinica;2015年02期
相关硕士学位论文 前1条
1 李愿;算子矩阵的谱扰动[D];陕西师范大学;2004年
,本文编号:2286142
本文链接:https://www.wllwen.com/kejilunwen/yysx/2286142.html