当前位置:主页 > 科技论文 > 数学论文 >

基于去滑动均值趋势的多重分形方法及其应用研究

发布时间:2018-10-22 12:34
【摘要】:多重分形是定义在分形结构上的有无穷多个标度指数所组成的一个集合,是描述不同的局域条件、或在演化过程中不同层次所导致的特殊的结构行为与特征。由于地质作用过程的长期性和多期性,矿化过程往往呈多期次重复性成矿,这种多次矿化叠加使得元素空间分布的结构具有嵌套结构,导致各种地球化学元素在地质体中逐步富集或贫化,反映出地球化学元素在岩石等介质中的分布具有非均质性和奇异性,因此,适合用多重分形方法研究。去滑动均值趋势多重分形方法(MFDMA)是运用滑动窗技术研究分形序列多重分形特征的一种有效方法,已在生物医学、经济学、计算机科学等领域中应用广泛。本文首先通过典型二项重分形模型研究数据容量、位置参数对去滑动均值趋势多重分形方法(MFDMA)的影响;其次,对比分析了去滑动均值趋势多重分形方法与去趋势波动多重分形方法(MFDFA)在不同噪声情况下的分形特征,并对得到的Hurst指数进行敏感性分析;最后,运用去滑动均值趋势多重分形方法(MFDMA)研究上庄次生晕成矿元素的奇异性特征。主要结果如下:(1)分析位置参数对MFDMA算法结果的影响。选取MFDMA算法位置分别参数为0、0.5、1,分析Hurst指数与理论值的差异程度。结果显示:在位置参数为0时,MFDMA算法计算的Hurst指数曲线趋于理论值的效果最好,均方根误差最小。(2)分析数据容量对MFDMA算法结果的影响。分别选取二项重分形序列中数据容量N为256、512、1024的三组数据,分析数据容量N对MFDMA方法的影响。结果显示:随着数据容量的增大,运用MFDMA计算的Hurst指数曲线快速逼近至理论值曲线,均方根误差逐渐减小,表明数据容量越大计算结果的精度越高。(3)分析噪声对MFDMA算法结果的影响。通过二项重分形模型添加高斯噪声、白噪声和尖峰噪声,分析噪声及强度对MFDMA计算Hurst估计值的影响,并与MFDFA进行对比。结果显示:高斯噪声、白噪声强度的增强对MFDMA有干扰作用,其中随着二项重分形模型参数增大,噪声的影响减少,抗噪能力增强;而MFDFA分辨噪声数据的能力较弱,容易受到噪声及其强度的影响;此外,尖峰噪声容易干扰MFDMA与MFDFA方法的分析结果,利用小波降噪法分析消除尖峰噪声后发现,降噪后的MFDMA方法Hurst指数估计值均方根误差普遍低于降噪前的均方根误差,因此,MFDMA相较于MFDFA具有更强的稳健性。(4)运用MFDMA算法分析山东上庄金矿成矿元素含量序列的多重分形特征。结果显示:Cu和Au的多重分形特征最明显,元素Hg、Zn、Pb次之,元素Ag、As、Sb最弱,其多重分形谱的形态差异可为矿化强度的识别提供依据。
[Abstract]:Multifractal is a set of infinitely many scale exponents defined on the fractal structure. It describes different local conditions or special structural behaviors and characteristics caused by different levels in the evolution process. Because of the long-term and multi-period characteristics of geological processes, the mineralization process often presents multiple repeated mineralization, which makes the structure of the spatial distribution of elements have nested structure. As a result of the gradual enrichment or dilution of various geochemical elements in geological bodies, the distribution of geochemical elements in rocks and other media is characterized by heterogeneity and singularity. Therefore, it is suitable to study by multifractal method. (MFDMA) is an effective method to study multifractal features of fractal sequences using sliding window technique. It has been widely used in biomedicine, economics, computer science and other fields. In this paper, we first study the effect of data capacity and position parameters on the multifractal method (MFDMA), which is based on the typical binomial multifractal model. The fractal characteristics of moving mean trend multifractal method (MFDFA) and de-trend fluctuation multifractal method (MFDFA) under different noise conditions are compared and analyzed. Finally, the sensitivity of the obtained Hurst exponents is analyzed. The singularity of ore-forming elements of secondary halo in Shangzhuang is studied by using the multifractal method of de-sliding mean trend (MFDMA). The main results are as follows: (1) the influence of location parameters on the results of MFDMA algorithm is analyzed. The position parameter of MFDMA algorithm is 0 / 0. 5 / 1, and the difference between Hurst exponent and theoretical value is analyzed. The results show that when the position parameter is 0, the Hurst exponent curve calculated by MFDMA algorithm is the best, and the root mean square error is the smallest. (2) the influence of data capacity on the result of MFDMA algorithm is analyzed. Three groups of data with data capacity N of 256 ~ 5121024 in binomial multifractal sequence were selected, and the influence of data capacity N on MFDMA method was analyzed. The results show that with the increase of data capacity, the Hurst exponent curve calculated by MFDMA is fast approaching to the theoretical value curve, and the root mean square error decreases gradually. It shows that the higher the data capacity, the higher the accuracy of the calculation results. (3) the influence of noise on the results of MFDMA algorithm is analyzed. By adding Gao Si noise, white noise and peak noise into binomial multifractal model, the influence of noise and intensity on Hurst estimation calculated by MFDMA is analyzed and compared with MFDFA. The results show that the enhancement of Gao Si noise and white noise intensity can interfere with MFDMA. With the increase of binomial multifractal model parameters, the effect of noise decreases and the anti-noise ability increases, while the ability of MFDFA to distinguish noise data is weak. In addition, the peak noise easily interferes with the analysis results of MFDMA and MFDFA methods, and the wavelet denoising method is used to eliminate the peak noise. The root mean square (RMS) error of Hurst exponent estimation of MFDMA method after denoising is generally lower than that of RMS before denoising. Therefore, MFDMA is more robust than MFDFA. (4) the multifractal characteristics of ore-forming element content series of Shangzhuang Gold Mine in Shandong Province are analyzed by MFDMA algorithm. The results show that the multifractal characteristics of Cu and Au are the most obvious, the element Hg,Zn,Pb is the second, and the element Ag,As,Sb is the weakest. The morphological difference of the multifractal spectrum can provide the basis for the recognition of mineralization intensity.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O189

【参考文献】

相关期刊论文 前10条

1 李衡;赵毅强;杨瑞霞;何家骥;李跃辉;杨松;;基于小波降噪数据预处理的硬件木马检测优化[J];计算机工程与应用;2017年01期

2 赖佳境;万丽;熊绪沅;;去滑动均值趋势的De Wijs模型多重分形特征分析[J];湖南文理学院学报(自然科学版);2016年02期

3 奚彩萍;张淑宁;熊刚;赵惠昌;;多重分形降趋波动分析法和移动平均法的分形谱算法对比分析[J];物理学报;2015年13期

4 熊杰;陈绍宽;韦伟;刘爽;关伟;;基于多重分形去趋势波动分析法的交通流多重分形无标度区间自动识别方法[J];物理学报;2014年20期

5 王宏勇;郭丽娜;;国际黄金期价与美元指数交互关系的多重分形分析[J];数理统计与管理;2015年05期

6 李洪奎;时文革;李逸凡;李璐邑;韩代成;曹丽丽;刘继梅;;山东胶东地区金矿成矿时代研究[J];黄金科学技术;2013年03期

7 林近山;陈前;;基于多重分形去趋势波动分析的齿轮箱故障特征提取方法[J];振动与冲击;2013年02期

8 万丽;邓小成;王庆飞;邵任翔;;MF-DFA方法与成矿元素分布特征——以大尹格庄金矿为例[J];中国矿业大学学报;2012年01期

9 聂淑媛;梁铁旺;;指数和滑动平均的历史发展探究[J];统计与决策;2011年24期

10 吴雪梅;娄珀瑜;;论随机噪声对光谱测量的影响[J];计算机与应用化学;2011年10期

相关博士学位论文 前2条

1 王晶;非平稳时间序列的多尺度分析[D];北京交通大学;2015年

2 周伟杰;灰色分形与计量建模及在沪深300市场中的应用[D];南京航空航天大学;2014年



本文编号:2287172

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2287172.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a40c2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com