一种简化的区间二型模糊系统辨识方法
发布时间:2018-10-24 06:57
【摘要】:KM降阶算法是目前区间二型模糊集合常用的降阶算法,针对其效率低、难以用于实时辨识与控制的缺点,提出了一种简化的区间二型模糊系统辨识方法。该方法采用二型T-S模糊模型,前件参数为区间二型模糊集合,后件参数为普通T-S模糊模型形式。二型T-S模糊模型的解模糊化采用简化的降阶算法,提高了模型的辨识效率,可用于实时辨识与控制。仿真实例表明,所提算法在不降低辨识精度的情况下能够有效提高辨识效率。
[Abstract]:KM order reduction algorithm is a commonly used order reduction algorithm for interval type 2 fuzzy sets. In view of its low efficiency and difficulty in real-time identification and control, a simplified identification method for interval type 2 fuzzy systems is proposed. The second type T-S fuzzy model is used in this method. The former part parameter is interval type 2 fuzzy set, the latter part parameter is ordinary T-S fuzzy model form. The de-fuzzification of the second type T-S fuzzy model adopts a simplified order reduction algorithm, which improves the identification efficiency of the model and can be used for real-time identification and control. Simulation results show that the proposed algorithm can effectively improve the identification efficiency without reducing the identification accuracy.
【作者单位】: 天津现代职业技术学院;
【分类号】:O159
本文编号:2290650
[Abstract]:KM order reduction algorithm is a commonly used order reduction algorithm for interval type 2 fuzzy sets. In view of its low efficiency and difficulty in real-time identification and control, a simplified identification method for interval type 2 fuzzy systems is proposed. The second type T-S fuzzy model is used in this method. The former part parameter is interval type 2 fuzzy set, the latter part parameter is ordinary T-S fuzzy model form. The de-fuzzification of the second type T-S fuzzy model adopts a simplified order reduction algorithm, which improves the identification efficiency of the model and can be used for real-time identification and control. Simulation results show that the proposed algorithm can effectively improve the identification efficiency without reducing the identification accuracy.
【作者单位】: 天津现代职业技术学院;
【分类号】:O159
【相似文献】
相关期刊论文 前4条
1 汤兵勇 ,石碰 ,张捍东;系统辨识方法应用的一些结果[J];黑龙江大学自然科学学报;1985年04期
2 梁保国 ,乐禄祉 ,李正平;学习—工作系统辨识方法初探[J];沈阳工业大学学报;1987年03期
3 韩志刚;安万福;;系统辨识方法在人均劳动生产能力数量指标计算中的应用[J];控制与决策;1988年02期
4 刘幼卿;李汉棣;陈志中;郑江琳;董伦群;陈四运;;学习——教学系统辨识方法初探[J];江汉大学学报(自然科学版);1988年01期
相关硕士学位论文 前1条
1 王婷;单变量系统辨识方法的研究与仿真[D];北京化工大学;2011年
,本文编号:2290650
本文链接:https://www.wllwen.com/kejilunwen/yysx/2290650.html