求解特定鞍点问题的改进SOR-Like方法
发布时间:2018-11-04 09:03
【摘要】:鞍点问题广泛出现在众多的工程研究领域,如流体力学、电磁学、最优化问题、最小二乘问题、椭圆偏微分方程问题等.以SOR类方法为基础,结合HS分裂思想,将经典鞍点问题的求解方法推广到特殊鞍点问题的求解上.给出一种具有新型分裂迭代格式的MSOR-Like方法,用以求解一类含有非对称块的鞍点系统,给出了相应的收敛性分析以及最优松弛参数选取方法.数值算例验证了对于不同的预优矩阵,MSORLike方法只有收敛速度的分别,没有收敛性能的影响,且在相同计算精度下,该方法解决特殊鞍点问题的迭代效果优于常规方法解决经典鞍点问题.
[Abstract]:Saddle point problems are widely used in many engineering fields, such as hydrodynamics, electromagnetism, optimization problems, least squares problems, elliptic partial differential equations and so on. Based on the SOR class method and the HS splitting idea, the classical saddle point problem solution method is extended to the special saddle point problem solution. A new split iterative MSOR-Like method is presented to solve a class of saddle point systems with asymmetric blocks. The corresponding convergence analysis and optimal relaxation parameter selection method are given. Numerical examples show that for different preoptimal matrices, the MSORLike method has only the difference of convergence rate and has no effect on the convergence performance, and under the same calculation precision, The iterative effect of this method for solving special saddle point problem is better than that of conventional method.
【作者单位】: 东北大学理学院;
【基金】:国家自然科学基金资助项目(11371081)
【分类号】:O241.6
[Abstract]:Saddle point problems are widely used in many engineering fields, such as hydrodynamics, electromagnetism, optimization problems, least squares problems, elliptic partial differential equations and so on. Based on the SOR class method and the HS splitting idea, the classical saddle point problem solution method is extended to the special saddle point problem solution. A new split iterative MSOR-Like method is presented to solve a class of saddle point systems with asymmetric blocks. The corresponding convergence analysis and optimal relaxation parameter selection method are given. Numerical examples show that for different preoptimal matrices, the MSORLike method has only the difference of convergence rate and has no effect on the convergence performance, and under the same calculation precision, The iterative effect of this method for solving special saddle point problem is better than that of conventional method.
【作者单位】: 东北大学理学院;
【基金】:国家自然科学基金资助项目(11371081)
【分类号】:O241.6
【相似文献】
相关期刊论文 前10条
1 万维明,迟晓恒;广义齐三次系统鞍点量问题[J];大连铁道学院学报;2001年03期
2 徐子珊;严格鞍点的查找算法[J];重庆工商大学学报(自然科学版);2004年05期
3 桑波;朱思铭;;焦点量与鞍点量的关系[J];数学年刊A辑(中文版);2007年02期
4 徐天博;李伟;;缺参数a_(23),b_(32)的齐五次系统的前四阶鞍点量公式[J];大连交通大学学报;2008年02期
5 赵景余;张国凤;常岩磊;;求解鞍点问题的一种新的结构算法[J];数值计算与计算机应用;2009年02期
6 万维明;周文;;齐四次系统鞍点量公式[J];大连交通大学学报;2010年06期
7 叶惟寅;二次系统鞍点量的计算[J];南京师大学报(自然科学版);1987年02期
8 李文辉;;鞍点的稳定性分析[J];沈阳化工学院学报;1992年03期
9 迟晓恒;三次系统第一第二鞍点量计算公式[J];东北师大学报(自然科学版);1995年01期
10 谢佐恒;动态系统中鞍点处的熵与分维[J];系统科学与数学;1996年01期
相关会议论文 前2条
1 朱怀念;植t熀,
本文编号:2309362
本文链接:https://www.wllwen.com/kejilunwen/yysx/2309362.html