当前位置:主页 > 科技论文 > 数学论文 >

数值求积公式在平均框架下的误差分析

发布时间:2018-11-06 18:22
【摘要】:本文得到了复化Simpson公式,Gauss-Legendre求积公式以及基于第二类Chebyshev多项式极值点的数值求积公式在r-重积分Wiener空间下的平均误差.对于复化Simpson公式我们证明了其饱和阶为3.对于Gauss-Legendre求积公式得到它是一种对具有不同光滑性的函数都有高度准确性的通用算子.我们给出了基于第二类Chebyshev多项式极值点的数值求积公式,并在r=0,1,2时给出了逼近误差的强渐近阶.
[Abstract]:In this paper, we obtain the average error of complex Simpson formula, Gauss-Legendre quadrature formula and the numerical quadrature formula based on the extreme point of the second Chebyshev polynomial in the r-multiple integral Wiener space. For the complex Simpson formula, we prove that its saturation order is 3. For the Gauss-Legendre quadrature formula, it is obtained that it is a universal operator with high accuracy for functions with different smoothness. We give a numerical quadrature formula based on the extremum point of the second kind of Chebyshev polynomials, and give the strong asymptotic order of the approximation error at r ~ (0 ~ 0 ~ 1, 2).
【学位授予单位】:天津师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O172.2

【共引文献】

相关期刊论文 前4条

1 ;Entropy number and non-linear approximations on multivariate Besov space by manifolds of finite pseudo-dimension[J];Progress in Natural Science;2006年03期

2 王晶晶;钱李新;;加权Besov嵌入中的线性随机宽度[J];浙江师范大学学报(自然科学版);2014年02期

3 王培;徐艳艳;蔡斌畏;塔实甫拉提;;无限维空间的线性逼近特征[J];新疆师范大学学报(自然科学版);2014年02期

4 王培;徐艳艳;蔡斌畏;塔实甫拉提;;无限维空间的线性逼近特征[J];新疆师范大学学报(自然科学版);2014年03期



本文编号:2315099

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2315099.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户04cc3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com